dp3--codevs2598 编辑距离问题
dp3--codevs2598 编辑距离问题
一、心得
1、字符串相关问题dp的时候从0开始是个陷阱
二、题目
设A和B是2个字符串。要用最少的字符操作将字符串A转换为字符串B。这里所说的字符操作包括:
(1)删除一个字符;
(2)插入一个字符;
(3)将一个字符改为另一个字符。
将字符串A变换为字符串B所用的最少字符操作数称为字符串A到B的编辑距离,记为d(A,B)。试编写程序,对任给的2个字符串A和B,计算出它们的编辑距离d(A,B)。
输入文件edit.in有两行,第一行是字符串A,第二行是字符串B。
输出文件edit.out只有一行,即编辑距离d(A,B)。
fxpimu
xwrs
5
40%的数据字符串A、B的长度均不超过100;
100%的数据字符串A、B的长度均不超过4000。
三、分析
* codeVs2598编辑距离.cpp
* 分析:
* 状态:
* f[i][j]表示串s1的前i个字符和串s2的前j个字符的编辑距离
* 最终状态:
* f[len_s1][len_s2]
* 初始状态:
* f[i][0]=i;f[0][j]=j
* 状态转移方程:
* f[i][j]=f[i-1][j-1]; (s1[i]==s2[j])
* f[i][j]=min(f[i-1][j-1],f[i-1][j],f[i][j-1])+1; (s1[i]!=s2[j])
上图为初始化及分析过程
上图为dp数组结果
四、AC代码
94ms
/*
* codeVs2598编辑距离.cpp
* 分析:
* 状态:
* f[i][j]表示串s1的前i个字符和串s2的前j个字符的编辑距离
* 最终状态:
* f[len_s1][len_s2]
* 初始状态:
* f[i][0]=i;f[0][j]=j
* 状态转移方程:
* f[i][j]=f[i-1][j-1]; (s1[i]==s2[j])
* f[i][j]=min(f[i-1][j-1],f[i-1][j],f[i][j-1])+1; (s1[i]!=s2[j])
*
*/ #include <iostream>
#include <string>
#include <cstdio>
using namespace std;
string s1, s2;
int f[][];
int len_s1, len_s2; void readData() {
cin >> s1 >> s2;
} void printRead() {
cout << s1 << endl << s2 << endl;
} void initLen() {
len_s1 = s1.length();
len_s2 = s2.length();
} void printLen() {
cout << len_s1 << endl << len_s2 << endl;
} void initArr_f() {
//f数组最初的初始化
for (int i = ; i <= len_s1; i++) {
for (int j = ; j <= len_s2; j++) {
f[i][j] = 0xfffff;
}
}
//0列
for (int i = ; i <= len_s1; i++) {
f[i][] = i;
}
//0行
for (int j = ; j <= len_s2; j++) {
f[][j] = j;
}
} void printArr_f() {
for (int i = ; i <= len_s1; i++) {
for (int j = ; j <= len_s2; j++) {
printf("%8d ", f[i][j]);
}
cout << endl;
}
} void init() {
readData();
//printRead();
initLen();
//printLen();
initArr_f();
//printArr_f();
} int min3(int a,int b,int c){
return min(min(a,b),c);
} void dp() {
for (int i = ; i <= len_s1; i++) {
for (int j = ; j <= len_s2; j++) {
if(s1[i-]==s2[j-]) f[i][j]=f[i-][j-];
else{
f[i][j]=min3(f[i-][j-],f[i-][j],f[i][j-])+;
}
}
}
} void printAns(){
cout<<f[len_s1][len_s2]<<endl;
} int main() {
//freopen("src/codeVs2598in.txt", "r", stdin);
init();
dp();
//printArr_f();
printAns();
return ;
}
/*
* 注意点:
* 1、f数组最初的初始化不能忘记
* f[i][j] = 0xfffff;
* 2、if(s1[i-1]==s2[j-1])这里忘记写减1了
* 字符串从0开始
*/
五、注意点
1、f数组最初的初始化不能忘记
f[i][j] = 0xfffff;
2、if(s1[i-1]==s2[j-1])这里忘记写减1了
字符串从0开始
dp3--codevs2598 编辑距离问题的更多相关文章
- [LeetCode] One Edit Distance 一个编辑距离
Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...
- C#实现Levenshtein distance最小编辑距离算法
Levenshtein distance,中文名为最小编辑距离,其目的是找出两个字符串之间需要改动多少个字符后变成一致.该算法使用了动态规划的算法策略,该问题具备最优子结构,最小编辑距离包含子最小编辑 ...
- 利用Levenshtein Distance (编辑距离)实现文档相似度计算
1.首先将word文档解压缩为zip /** * 修改后缀名 */ public static String reName(String path){ File file=new File(path) ...
- Levenshtein Distance算法(编辑距离算法)
编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符, ...
- 编辑距离——Edit Distance
编辑距离 在计算机科学中,编辑距离是一种量化两个字符串差异程度的方法,也就是计算从一个字符串转换成另外一个字符串所需要的最少操作步骤.不同的编辑距离中定义了不同操作的集合.比较常用的莱温斯坦距离(Le ...
- 编辑距离及其动态规划算法(Java代码)
编辑距离概念描述 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.一般情况下编辑操作包括: 将一个字符替换成另一个字符: 插入一个字符: 删除一个字 ...
- stanford NLP学习笔记3:最小编辑距离(Minimum Edit Distance)
I. 最小编辑距离的定义 最小编辑距离旨在定义两个字符串之间的相似度(word similarity).定义相似度可以用于拼写纠错,计算生物学上的序列比对,机器翻译,信息提取,语音识别等. 编辑距离就 ...
- leetcode72. Edit Distance(编辑距离)
以下为个人翻译方便理解 编辑距离问题是一个经典的动态规划问题.首先定义dp[i][j表示word1[0..i-1]到word2[0..j-1]的最小操作数(即编辑距离). 状态转换方程有两种情况:边界 ...
- 准备NOIP2017 编辑距离问题 模板
输入 第1行:字符串a(a的长度 <= 1000). 第2行:字符串b(b的长度 <= 1000). 输出 输出a和b的编辑距离 输入示例 kitten sitting 输出示例 ...
随机推荐
- python系列十一:python3数据结构
#!/usr/bin/python #Python3 数据结构'''Python中列表是可变的,这是它区别于字符串和元组的最重要的特点,一句话概括即:列表可以修改,而字符串和元组不能.''' '''将 ...
- Datetime 模块求日期差
Datetime 模块求日期差 导入 datetime 模块/实例化当前时间对象 调用.date() 方法 得到当前年/月/日时间 实例化时间差对象 delta 求当前日期减去时间差 delta 后的 ...
- Facebook支持python的开源预测工具Prophet
Facebook 宣布开源一款基于 Python 和 R 语言的数据预测工具――“Prophet”,即“先知”.取名倒是非常直白. Facebook 表示,Prophet 相比现有预测工具更加人性化, ...
- 剑指offer 面试18题
面试18题: 题目:删除链表中的节点 题一:在O(1)时间内删除链表节点.给定单向链表的头指针和一个节点指针,定义一个函数在O(1)时间内删除该节点. 解题思路:我们要删除节点i,先把i的下一个节点j ...
- pip3命令报错Fatal error in launcher: Unable to create process using '"d:\old_files\py3.6\python.exe" "E:\py3.6\Scripts\pip3.exe" list'
cmd输入pip3 list命令报错 Fatal error in launcher: Unable to create process using '"d:\old_files\py3.6 ...
- Pacemaker详解
一.前言 云计算与集群系统密不可分,作为分布式计算和集群计算的集大成者,云计算的基础设施必须通过集群进行管理控制,而作为拥有大量资源与节点的集群,必须具备一个强大的集群资源管理器(Cluster sy ...
- Loadrunder脚本篇——webservice接口测试(二)
1.选择协议--Web Service,如下图 2.导入服务 入口1:点击Manage Services ->弹出窗中选择“Import” ->弹出窗中选择“URL”,填写wsdl地址,导 ...
- loadrunder之脚本篇——定义全局变量
如果参数是全局的,在脚本中的任何一个Action中都可以使用,变量一般是局部的,如果跨Action调用会出现未声明的错误. 打开Script视图中左侧Action列表中的globals.h文件,可定义 ...
- $Java-json系列(一):用GSON解析Json格式数据
GSON是谷歌提供的开源库,用来解析Json格式的数据,非常好用.如果要使用GSON的话,则要先下载gson-2.2.4.jar这个文件,如果是在Android项目中使用,则在Android项目的li ...
- Android开发BUG及解决方法
错误描述 问题1: 按照提示打开gradle-wrapper.properties文件 并且将gradle-2.8-all.zip改为gradle-2.10-all.zip,重新导入项目 问题2: 却 ...