@drsimonj here to show you how to conduct ridge regression (linear regression with L2 regularization) in R using the glmnet package, and use simulations to demonstrate its relative advantages over ordinary least squares regression.

Ridge regression

Ridge regression uses L2 regularisation to weight/penalise residuals when the parameters of a regression model are being learned. In the context of linear regression, it can be compared to Ordinary Least Square (OLS). OLS defines the function by which parameter estimates (intercepts and slopes) are calculated. It involves minimising the sum of squared residuals. L2 regularisation is a small addition to the OLS function that weights residuals in a particular way to make the parameters more stable. The outcome is typically a model that fits the training data less well than OLS but generalises better because it is less sensitive to extreme variance in the data such as outliers.

Packages

We’ll make use of the following packages in this post:

library(tidyverse)
library(broom)
library(glmnet)

Ridge regression with glmnet

The glmnet package provides the functionality for ridge regression viaglmnet(). Important things to know:

  • Rather than accepting a formula and data frame, it requires a vector input and matrix of predictors.
  • You must specify alpha = 0 for ridge regression.
  • Ridge regression involves tuning a hyperparameter, lambda. glmnet() will generate default values for you. Alternatively, it is common practice to define your own with the lambda argument (which we’ll do).

Here’s an example using the mtcars data set:

y <- mtcars$hp
x <- mtcars %>% select(mpg, wt, drat) %>% data.matrix()
lambdas <- 10^seq(3, -2, by = -.1) fit <- glmnet(x, y, alpha = 0, lambda = lambdas)
summary(fit)
#> Length Class Mode
#> a0 51 -none- numeric
#> beta 153 dgCMatrix S4
#> df 51 -none- numeric
#> dim 2 -none- numeric
#> lambda 51 -none- numeric
#> dev.ratio 51 -none- numeric
#> nulldev 1 -none- numeric
#> npasses 1 -none- numeric
#> jerr 1 -none- numeric
#> offset 1 -none- logical
#> call 5 -none- call
#> nobs 1 -none- numeric

Because, unlike OLS regression done with lm(), ridge regression involves tuning a hyperparameter, lambda, glmnet() runs the model many times for different values of lambda. We can automatically find a value for lambda that is optimal by using cv.glmnet() as follows:

cv_fit <- cv.glmnet(x, y, alpha = 0, lambda = lambdas)

cv.glmnet() uses cross-validation to work out how well each model generalises, which we can visualise as:

plot(cv_fit)

The lowest point in the curve indicates the optimal lambda: the log value of lambda that best minimised the error in cross-validation. We can extract this values as:

opt_lambda <- cv_fit$lambda.min
opt_lambda
#> [1] 3.162278

And we can extract all of the fitted models (like the object returned byglmnet()) via:

fit <- cv_fit$glmnet.fit
summary(fit)
#> Length Class Mode
#> a0 51 -none- numeric
#> beta 153 dgCMatrix S4
#> df 51 -none- numeric
#> dim 2 -none- numeric
#> lambda 51 -none- numeric
#> dev.ratio 51 -none- numeric
#> nulldev 1 -none- numeric
#> npasses 1 -none- numeric
#> jerr 1 -none- numeric
#> offset 1 -none- logical
#> call 5 -none- call
#> nobs 1 -none- numeric

These are the two things we need to predict new data. For example, predicting values and computing an R2 value for the data we trained on:

y_predicted <- predict(fit, s = opt_lambda, newx = x)

# Sum of Squares Total and Error
sst <- sum(y^2)
sse <- sum((y_predicted - y)^2) # R squared
rsq <- 1 - sse / sst
rsq
#> [1] 0.9318896

The optimal model has accounted for 93% of the variance in the training data.

Ridge v OLS simulations

By producing more stable parameters than OLS, ridge regression should be less prone to overfitting training data. Ridge regression might, therefore, predict training data less well than OLS, but better generalise to new data. This will particularly be the case when extreme variance in the training data is high, which tends to happen when the sample size is low and/or the number of features is high relative to the number of observations.

Below is a simulation experiment I created to compare the prediction accuracy of ridge regression and OLS on training and test data.

I first set up the functions to run the simulation:

# Compute R^2 from true and predicted values
rsquare <- function(true, predicted) {
sse <- sum((predicted - true)^2)
sst <- sum(true^2)
rsq <- 1 - sse / sst # For this post, impose floor...
if (rsq < 0) rsq <- 0 return (rsq)
} # Train ridge and OLS regression models on simulated data set with `n_train`
# observations and a number of features as a proportion to `n_train`,
# `p_features`. Return R squared for both models on:
# - y values of the training set
# - y values of a simualted test data set of `n_test` observations
# - The beta coefficients used to simulate the data
ols_vs_ridge <- function(n_train, p_features, n_test = 200) {
## Simulate datasets
n_features <- floor(n_train * p_features)
betas <- rnorm(n_features) x <- matrix(rnorm(n_train * n_features), nrow = n_train)
y <- x %*% betas + rnorm(n_train)
train <- data.frame(y = y, x) x <- matrix(rnorm(n_test * n_features), nrow = n_test)
y <- x %*% betas + rnorm(n_test)
test <- data.frame(y = y, x) ## OLS
lm_fit <- lm(y ~ ., train) # Match to beta coefficients
lm_betas <- tidy(lm_fit) %>%
filter(term != "(Intercept)") %>%
{.$estimate}
lm_betas_rsq <- rsquare(betas, lm_betas) # Fit to training data
lm_train_rsq <- glance(lm_fit)$r.squared # Fit to test data
lm_test_yhat <- predict(lm_fit, newdata = test)
lm_test_rsq <- rsquare(test$y, lm_test_yhat) ## Ridge regression
lambda_vals <- 10^seq(3, -2, by = -.1) # Lambda values to search
cv_glm_fit <- cv.glmnet(as.matrix(train[,-1]), train$y, alpha = 0, lambda = lambda_vals, nfolds = 5)
opt_lambda <- cv_glm_fit$lambda.min # Optimal Lambda
glm_fit <- cv_glm_fit$glmnet.fit # Match to beta coefficients
glm_betas <- tidy(glm_fit) %>%
filter(term != "(Intercept)", lambda == opt_lambda) %>%
{.$estimate}
glm_betas_rsq <- rsquare(betas, glm_betas) # Fit to training data
glm_train_yhat <- predict(glm_fit, s = opt_lambda, newx = as.matrix(train[,-1]))
glm_train_rsq <- rsquare(train$y, glm_train_yhat) # Fit to test data
glm_test_yhat <- predict(glm_fit, s = opt_lambda, newx = as.matrix(test[,-1]))
glm_test_rsq <- rsquare(test$y, glm_test_yhat) data.frame(
model = c("OLS", "Ridge"),
betas_rsq = c(lm_betas_rsq, glm_betas_rsq),
train_rsq = c(lm_train_rsq, glm_train_rsq),
test_rsq = c(lm_test_rsq, glm_test_rsq)
) } # Function to run `ols_vs_ridge()` `n_replications` times
repeated_comparisons <- function(..., n_replications = 5) {
map(seq(n_replications), ~ ols_vs_ridge(...)) %>%
map2(seq(.), ~ mutate(.x, replicate = .y)) %>%
reduce(rbind)
}

Now run the simulations for varying numbers of training data and relative proportions of features (takes some time):

d <- purrr::cross_d(list(
n_train = seq(20, 200, 20),
p_features = seq(.55, .95, .05)
)) d <- d %>%
mutate(results = map2(n_train, p_features, repeated_comparisons))

Visualise the results…

For varying numbers of training data (averaging over number of features), how well do both models predict the training and test data?

d %>%
unnest() %>%
group_by(model, n_train) %>%
summarise(
train_rsq = mean(train_rsq),
test_rsq = mean(test_rsq)) %>%
gather(data, rsq, contains("rsq")) %>%
mutate(data = gsub("_rsq", "", data)) %>%
ggplot(aes(n_train, rsq, color = model)) +
geom_line() +
geom_point(size = 4, alpha = .3) +
facet_wrap(~ data) +
theme_minimal() +
labs(x = "Number of training observations",
y = "R squared")

As hypothesised, OLS fits the training data better but Ridge regression better generalises to new test data. Further, these effects are more pronounced when the number of training observations is low.

For varying relative proportions of features (averaging over numbers of training data) how well do both models predict the training and test data?

d %>%
unnest() %>%
group_by(model, p_features) %>%
summarise(
train_rsq = mean(train_rsq),
test_rsq = mean(test_rsq)) %>%
gather(data, rsq, contains("rsq")) %>%
mutate(data = gsub("_rsq", "", data)) %>%
ggplot(aes(p_features, rsq, color = model)) +
geom_line() +
geom_point(size = 4, alpha = .3) +
facet_wrap(~ data) +
theme_minimal() +
labs(x = "Number of features as proportion\nof number of observation",
y = "R squared")

Again, OLS has performed slightly better on training data, but Ridge better on test data. The effects are more pronounced when the number of features is relatively high compared to the number of training observations.

The following plot helps to visualise the relative advantage (or disadvantage) of Ridge to OLS over the number of observations and features:

d %>%
unnest() %>%
group_by(model, n_train, p_features) %>%
summarise(train_rsq = mean(train_rsq),
test_rsq = mean(test_rsq)) %>%
group_by(n_train, p_features) %>%
summarise(RidgeAdvTrain = train_rsq[model == "Ridge"] - train_rsq[model == "OLS"],
RidgeAdvTest = test_rsq[model == "Ridge"] - test_rsq[model == "OLS"]) %>%
gather(data, RidgeAdvantage, contains("RidgeAdv")) %>%
mutate(data = gsub("RidgeAdv", "", data)) %>%
ggplot(aes(n_train, p_features, fill = RidgeAdvantage)) +
scale_fill_gradient2(low = "red", high = "green") +
geom_tile() +
theme_minimal() +
facet_wrap(~ data) +
labs(x = "Number of training observations",
y = "Number of features as proportion\nof number of observation") +
ggtitle("Relative R squared advantage of Ridge compared to OLS")

This shows the combined effect: that Ridge regression better transfers to test data when the number of training observations is low and/or the number of features is high relative to the number of training observations. OLS performs slightly better on the training data under similar conditions, indicating that it is more prone to overfitting training data than when ridge regularisation is employed.

Sign off

Thanks for reading and I hope this was useful for you.

For updates of recent blog posts, follow @drsimonj on Twitter, or email me atdrsimonjackson@gmail.com to get in touch.

If you’d like the code that produced this blog, check out the blogR GitHub repository.

转自:https://drsimonj.svbtle.com/ridge-regression-with-glmnet

How and when: ridge regression with glmnet的更多相关文章

  1. ISLR系列:(4.2)模型选择 Ridge Regression & the Lasso

    Linear Model Selection and Regularization 此博文是 An Introduction to Statistical Learning with Applicat ...

  2. Ridge Regression(岭回归)

    Ridge Regression岭回归 数值计算方法的"稳定性"是指在计算过程中舍入误差是可以控制的. 对于有些矩阵,矩阵中某个元素的一个很小的变动,会引起最后计算结果误差很大,这 ...

  3. support vector regression与 kernel ridge regression

    前一篇,我们将SVM与logistic regression联系起来,这一次我们将SVM与ridge regression(之前的linear regression)联系起来. (一)kernel r ...

  4. Jordan Lecture Note-4: Linear & Ridge Regression

    Linear & Ridge Regression 对于$n$个数据$\{(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)\},x_i\in\mathbb{R}^d,y ...

  5. Ridge Regression and Ridge Regression Kernel

    Ridge Regression and Ridge Regression Kernel Reference: 1. scikit-learn linear_model ridge regressio ...

  6. 再谈Lasso回归 | elastic net | Ridge Regression

    前文:Lasso linear model实例 | Proliferation index | 评估单细胞的增殖指数 参考:LASSO回歸在生物醫學資料中的簡單實例 - 生信技能树 Linear le ...

  7. 岭回归(Ridge Regression)

    一.一般线性回归遇到的问题 在处理复杂的数据的回归问题时,普通的线性回归会遇到一些问题,主要表现在: 预测精度:这里要处理好这样一对为题,即样本的数量和特征的数量 时,最小二乘回归会有较小的方差 时, ...

  8. Kernel ridge regression(KRR)

    作者:桂. 时间:2017-05-23  15:52:51 链接:http://www.cnblogs.com/xingshansi/p/6895710.html 一.理论描述 Kernel ridg ...

  9. 机器学习方法:回归(二):稀疏与正则约束ridge regression,Lasso

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. "机器学习方法"系列,我本着开放与共享(open and share)的精神撰写,目的是 ...

随机推荐

  1. 03 Types of Learning

    学习的分类: 根据输出空间Y:分类(二分类.多分类).回归.结构化(监督学习+输出空间有结构): 根据标签y:监督学习.无监督学习(聚类.密度估计.异常点检测).半监督学习(标注成本高时).强化学习: ...

  2. Android使用Path实现仿最新淘宝轮播广告底部弧形有锯齿的问题以及解决办法

    在前面一篇博文<Android高仿京东淘宝自动无限循环轮播控件的实现思路和过程>中已经基本介绍了实现轮播广告的基本思路和过程,但是仔细观察淘宝的轮播广告栏,发现在轮播广告栏的底部有个小小的 ...

  3. 如何在Windows系统下安装Linux虚拟机

    先安装虚拟机这个软件,然后在虚拟机里装linux. 1,准备,下载VM虚拟机,链接: http://pan.baidu.com/s/1z79oU 密码: vbap.和linux镜像文件,可以下载ubu ...

  4. Apache URL重写规则

    1.简介 Apached的重写功能,即是mod_rewrite模块功能,它是apache的一个模块.它的功能非常强大,可以操作URL中的所有部分. 因此我们就可以改写url,给用户提供一个简介大方的u ...

  5. 卷积神经网络CNN与深度学习常用框架的介绍与使用

    一.神经网络为什么比传统的分类器好 1.传统的分类器有 LR(逻辑斯特回归) 或者 linear SVM ,多用来做线性分割,假如所有的样本可以看做一个个点,如下图,有蓝色的点和绿色的点,传统的分类器 ...

  6. 深度学习入门实战(二)-用TensorFlow训练线性回归

    欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者 :董超 上一篇文章我们介绍了 MxNet 的安装,但 MxNet 有个缺点,那就是文档不太全,用起来可能 ...

  7. A GDI+ Based Character LCD Control

    This is a renew. A GDI+ Based Character LCD Control by Conmajia Character liquid crystal display (LC ...

  8. Python资源汇总

    Python 目录: 管理面板 算法和设计模式 反垃圾邮件 资产管理 音频 验证 构建工具 缓存 ChatOps工具 CMS 代码分析和Linter 命令行工具 兼容性 计算机视觉 并发和并行性 组态 ...

  9. AOJ/搜索递归分治法习题集

    ALDS1_4_A-LinearSearch. Description: You are given a sequence of n integers S and a sequence of diff ...

  10. SSH小结

    工作有一段时间了,经常用SSH登录远程机器,但对原理一直不是很了解,所以查阅了一些资料,写个小结. 一. SSH是什么? SSH的全称是Secure Shell, 是一种"用来在不安全的网络 ...