Hybrid Crystals

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 322    Accepted Submission(s): 191

Problem Description
> Kyber crystals, also called the living crystal or simply the kyber, and known as kaiburr crystals in ancient times, were rare, Force-attuned crystals that grew in nature and were found on scattered planets across the galaxy. They were used by the Jedi and the Sith in the construction of their lightsabers. As part of Jedi training, younglings were sent to the Crystal Caves of the ice planet of Ilum to mine crystals in order to construct their own lightsabers. The crystal's mix of unique lustre was called "the water of the kyber" by the Jedi. There were also larger, rarer crystals of great power and that, according to legends, were used at the heart of ancient superweapons by the Sith.
>
> — Wookieepedia

Powerful, the Kyber crystals are. Even more powerful, the Kyber crystals get combined together. Powered by the Kyber crystals, the main weapon of the Death Star is, having the firepower of thousands of Star Destroyers.

Combining Kyber crystals is not an easy task. The combination should have a specific level of energy to be stablized. Your task is to develop a Droid program to combine Kyber crystals.

Each crystal has its level of energy (i-th crystal has an energy level of ai). Each crystal is attuned to a particular side of the force, either the Light or the Dark. Light crystals emit positive energies, while dark crystals emit negative energies. In particular,

* For a light-side crystal of energy level ai, it emits +ai units of energy.
* For a dark-side crystal of energy level ai, it emits −ai units of energy.

Surprisingly, there are rare neutral crystals that can be tuned to either dark or light side. Once used, it emits either +ai or −ai units of energy, depending on which side it has been tuned to.

Given n crystals' energy levels ai and types bi (1≤i≤n), bi=N means the i-th crystal is a neutral one, bi=L means a Light one, and bi=D means a Dark one. The Jedi Council asked you to choose some crystals to form a larger hybrid crystal. To make sure it is stable, the final energy level (the sum of the energy emission of all chosen crystals) of the hybrid crystal must be exactly k.

Considering the NP-Hardness of this problem, the Jedi Council puts some additional constraints to the array such that the problem is greatly simplified.

First, the Council puts a special crystal of a1=1,b1=N.

Second, the Council has arranged the other n−1 crystals in a way that

ai≤∑j=1i−1aj[bj=N]+∑j=1i−1aj[bi=L∩bj=L]+∑j=1i−1aj[bi=D∩bj=D](2≤i≤n).

[cond] evaluates to 1 if cond holds, otherwise it evaluates to 0.

For those who do not have the patience to read the problem statements, the problem asks you to find whether there exists a set S⊆{1,2,…,n} and values si for all i∈S such that

∑i∈Sai∗si=k,

where si=1 if the i-th crystal is a Light one, si=−1 if the i-th crystal is a Dark one, and si∈{−1,1} if the i-th crystal is a neutral one.

 
Input
The first line of the input contains an integer T, denoting the number of test cases.

For each test case, the first line contains two integers n (1≤n≤103) and k (|k|≤106).

The next line contains n integer a1,a2,...,an (0≤ai≤103).

The next line contains n character b1,b2,...,bn (bi∈{L,D,N}).

 
Output
If there exists such a subset, output "yes", otherwise output "no".
 
Sample Input
2

5 9
1 1 2 3 4
N N N N N

6 -10
1 0 1 2 3 1
N L L L L D

 
Sample Output
yes
no
 
Source

/*
* @Author: lyuc
* @Date: 2017-08-17 16:25:54
* @Last Modified by: lyuc
* @Last Modified time: 2017-08-17 16:39:10
*/
/*
题意;有n个晶石,每个有三种属性,L,D,N,如果选了L的你可以+a[i],选D的你可以-a[i]
如果选了N的加减都可以,问你能不能凑成k 思路:这道题中的数能组成的数构成了一个连续区间.一开始只有a[1]的时候能够构成 [-1, 1]
中的所有整数.如果一堆数能够构成 [-a, b]中的所有整数, 这时候来了一个数 x. 如果 x
只能取正值的话, 如果有 x<=b, 那么就能够构成 [-a, b+x]的所有整数.如果 x 只能取负
值, 如果有 x <=y, 那么就能构成 [-a-x, b]的所有整数.如果 x 可正可负, 如果有 x <=≤min(x,y)
, 那么就能构成 [-a-x, b+x]中的所有整数. 然后题目中那个奇怪的不等式就保证了上面的"如果有"的条件.
*/ #include <bits/stdc++.h> #define MAXN 1005
#define MAXA 2 using namespace std; int t;
int n,k;
int a[MAXN];
char str[MAXN][MAXA];
int l,r; void init(){
l=;
r=;
} int main(){
//freopen("in.txt","r",stdin);
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&k);
init();
for(int i=;i<n;i++){
scanf("%d",&a[i]);
}
for(int i=;i<n;i++){
scanf("%s",str[i]);
}
for(int i=;i<n;i++){
if(str[i][]=='L'){
l-=a[i];
}else if(str[i][]=='D'){
r+=a[i];
}else{
l-=a[i];
r+=a[i];
}
}
if(k>){
if(k<=r){
puts("yes");
}else {
puts("no");
}
}else if(k<){
if(k>=l){
puts("yes");
}else{
puts("no");
}
}else{
puts("yes");
}
}
return ;
}

HDU 6140 Hybrid Crystals的更多相关文章

  1. 2017ACM暑期多校联合训练 - Team 8 1008 HDU 6140 Hybrid Crystals (模拟)

    题目链接 Problem Description Kyber crystals, also called the living crystal or simply the kyber, and kno ...

  2. HDU 6140 17多校8 Hybrid Crystals(思维题)

    题目传送: Hybrid Crystals Problem Description > Kyber crystals, also called the living crystal or sim ...

  3. 【2017 Multi-University Training Contest - Team 8】Hybrid Crystals

    [Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6140 [Description] 等价于告诉你有n个物品,每个物品的价值为-a[i]或a[i],或 ...

  4. hdu 6140 思维

    题解:这道题中的数能组成的数构成了一个连续区间. 一开始只有 a1​​ 的时候能够构成 [-1, 1][−1,1] 中的所有整数. 如果一堆数能够构成 [-a, b][−a,b] 中的所有整数, 这时 ...

  5. HDU6140--Hybrid Crystals(思维)

    Hybrid Crystals Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  6. 2017 Multi-University Training Contest - Team 8

    HDU6140 Hybrid Crystals 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6140 题目意思:这场多校是真的坑,题目爆长,心态爆炸, ...

  7. HDU 6118 度度熊的交易计划 【最小费用最大流】 (2017"百度之星"程序设计大赛 - 初赛(B))

    度度熊的交易计划 Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  8. HDU 6119 小小粉丝度度熊 【预处理+尺取法】(2017"百度之星"程序设计大赛 - 初赛(B))

    小小粉丝度度熊 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  9. HDU 6114 Chess 【组合数】(2017"百度之星"程序设计大赛 - 初赛(B))

    Chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

随机推荐

  1. Dynamic web module 版本之间的区别

    Servlet 3十二月2009开发平台标准版6,6可插性,易于开发,异步ser vlet,安全,文件上传Servlet 2.5九月2005开发平台标准版5,5需要平台标准版5,支持注释Servlet ...

  2. Java开发规范总结(两周至少看一次)

     Service / DAO 层方法命名规约: 1 ) 获取单个对象的方法用 get 做前缀.2 ) 获取多个对象的方法用 list 做前缀.3 ) 获取统计值的方法用 count 做前缀.4 ) 插 ...

  3. TCP/IP中你不得不知的十大秘密

    这段时间 有一点心很浮躁,不过希望自己马上要矫正过来.好好学习编程!这段时间我想好好地研究一下TCP/IP协议和网络传输这块!加油 一.TCP/IP模型 TCP/IP协议模型(Transmission ...

  4. 外设位宽为8、16、32时,CPU与外设之间地址线的连接方法

    有不少人问到:flash连接CPU时,根据不同的数据宽度,比如16位的NOR FLASH (A0-A19),处理器的地址线要(A1-A20)左移偏1位.为什么要偏1位? (全文有点晦涩,建议收藏本文对 ...

  5. bzoj3156 防御准备 - 斜率优化

    Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sample Input 102 3 ...

  6. 翻译 | 关键CSS和Webpack: 减少阻塞渲染的CSS的自动化解决方案

    原文地址: Critical CSS and Webpack: Automatically Minimize Render-Blocking CSS 原文作者: Anthony Gore 译者: 蜗牛 ...

  7. UpdatePanel控件的使用和局部刷新

    http://www.cnblogs.com/baiefjg/archive/2009/06/14/1502813.html

  8. nginx知识点简单回顾

    html { font-family: sans-serif } body { margin: 0 } article,aside,details,figcaption,figure,footer,h ...

  9. win10 uwp 自定义控件 SplitViewItem

    本文主要是因为汉堡菜单里面列出的菜单很多重复的图标和文字,我把它作为控件,因为是随便写,可能存在错误,如果发现了,请和我说或关掉浏览器,请不要发不良言论. 我们使用汉堡菜单,经常需要一个 需要一个图标 ...

  10. Android Stuido 提高开发效率的插件

    好久没有更新博客了,最近搞个listview搞得半死不活的,心累~~ 今天带来的是Android Studio插件的整理,全是我已经安装使用的,写这篇博文的目的也是因为我怕我自己给忘记怎么用(尴尬) ...