Fast Walsh-Hadamard Transform——快速沃尔什变换
模板题:
给定$n = 2^k$和两个序列$A_{0..n-1}$, $B_{0..n-1}$,求
$$C_i = \sum_{j \oplus k = i} A_j B_k$$
其中$\oplus$是某一满足交换律的位运算,要求复杂度$O(nlogn)$。
快速沃尔什变换:
这是什么东西?有用吗?请参阅SDOI2017r2d1-cut。
看到这个大家是不是立刻想到了快速傅里叶变换?
$$C_i = \sum_{j + k = i} A_j B_k$$
我们来想想离散傅里叶变换的本质。
$$\begin{aligned}& DFT(A)_i \\
&= A(\omega_n^i)\\
&=\sum_{j = 1}^n A_j * (\omega_n^i)^j\end{aligned}$$
令$f(n, i, j) = (\omega_n^i)^j$,则
$$DFT(A)_i = \sum_{j = 1}^n A_j f(n, i, j)$$
它要满足$DFT(A)_i * DFT(B)_i = DFT(C)_i$,即
$$(\sum_{j = 1}^n A_j f(n, i, j))(\sum_{k = 1}^n B_k f(n, i, k))=\sum_{l = 1}^n C_l f(n, i, l)$$
$$\sum_{j = 1}^n \sum_{k = 1}^n A_j B_k f(n, i, j) f(n, i, k))=\sum_{l = 1}^n (\sum_{a+b=l} A_a B_b) f(n, i, l)$$
这时我们发现左右分别有$n^2$项,令对应项系数相等,得
$$f(n, i, j)f(n, i, k) = f(n, i, j + k)$$
只要任意一个可以进行逆变换且满足上述条件的$f$都可以。
现在我们把上面的$+$都改成$\oplus$,就是离散沃尔什变换即
$$DWT(A)_i = \sum_{j = 1}^n A_j f(n, i, j)$$
$$f(n, i, j)f(n, i, k) = f(n, i, j \oplus k)$$
怎么样,是不是云里雾里顿开茅塞?
然而我们还需要变快,所以快速傅里叶变换采用
$$f(n, i, j) = (\omega_n^i)^j$$
那它有什么优美的性质呢?
我们发现, 由于有折半引理,$f(n, i, j)$和$f(n, i+n/2, j)$可以同时从$f(n/2,i,j)$得来。
那么,从感性的角度,既然$\oplus$是一个位运算,那么应该更容易找到一个跟位运算有关的$f$,这样就自然有类似折半引理的东西使得我们可以做到上述事情。
例如,当$\oplus$是位与时,可以取$f(i, j) = [i \& j = i]$, 即$j$的二进制完全包含在$i$的二进制里时为1,否则为0。
当$\oplus$是位异或时, 可取$f(i, j) = (-1)^{count(i \& j)}$,其中$count(x)$表示$x$的二进制表示中1的个数。
逆变换:
逆变换看上去好难啊。。。
其实逆变换还是比较简单的。因为既然$f$跟位运算有关,我就只需要考虑某一位就好了。
例如$\oplus$是位异或时我考虑$n=2,A=(a_0, a_1)$,
那么$DWT(A) = (da_0 = a_0 + a_1, da_1 = a_0 - a_1)$
我只需要解一个二元一次方程(把$da_0, da_1$作为常数, $a_0, a_1$作为变量)就可以解出$a_0, a_1$了。
没了。
关于$f$函数的构造:
$f$函数怎么构造。。。和逆变换的方法差不多啊。。。只需要看$n=2$的情况就行(实际上一般就是$-1$的几次幂,或者$0, 1, -1$)
如果记忆力好可以把所有都背下来,反正满足交换律的位运算只有8个。。。
列一些出来吧。。。(下列$f$函数均将第一个参数$n$省略, $[expr]$在布尔表达式$expr$为真时为1, 否则为假)
$\oplus$为位与: $f(i, j) = [j \& i = i]$.
$\oplus$为位或: $f(i, j) = [j \& i = j]$.
$\oplus$为位异或: $f(i, j) = (-1)^{count(i \& j)}$.
$\oplus$为位与非,位或非的时候把三个数组的下标都取反就对应位或和位与。
$\oplus$为同或时直接求位异或卷积再把$C$的下标取反就行了。
吐槽:
明明可以感性的理解我偏要说这么多。。。
只是因为闲的慌。。。
当然是要帮助大家更好的理解FWT。
至于为什么要满足交换律。。。我才不会告诉你我还没有搞出不满足怎么做。
Fast Walsh-Hadamard Transform——快速沃尔什变换的更多相关文章
- Fast Walsh–Hadamard transform
考虑变换 $$\hat{A_x} = \sum_{i\ or\ x = x}{ A_i }$$ 记 $S_{t}(A,x) = \sum_{c(i,t)\ or\ c(x,t)=c(x,t),\ i ...
- Fast Walsh-Hadamard Transform——快速沃尔什变换(二)
上次的博客有点模糊的说...我把思路和算法实现说一说吧... 思路 关于快速沃尔什变换,为了方便起见,我们采用线性变换(非线性变换不会搞). 那么,就会有一个变化前各数值在变换后各处的系数,即前一篇博 ...
- 关于快速沃尔什变换(FWT)的一点学习和思考
最近在学FWT,抽点时间出来把这个算法总结一下. 快速沃尔什变换(Fast Walsh-Hadamard Transform),简称FWT.是快速完成集合卷积运算的一种算法. 主要功能是求:,其中为集 ...
- 能轻松背板子的FWT(快速沃尔什变换)
FWT应用 我不知道\(FWT\)的严格定义 百度百科和维基都不知道给一坨什么****东西** FWT(Fast Walsh Fransform),中文名快速沃尔什变换 然后我也不知道\(FWT\)到 ...
- 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记
一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...
- FWT快速沃尔什变换学习笔记
FWT快速沃尔什变换学习笔记 1.FWT用来干啥啊 回忆一下多项式的卷积\(C_k=\sum_{i+j=k}A_i*B_j\) 我们可以用\(FFT\)来做. 甚至在一些特殊情况下,我们\(C_k=\ ...
- [学习笔记]FWT——快速沃尔什变换
解决涉及子集配凑的卷积问题 一.介绍 1.基本用法 FWT快速沃尔什变换学习笔记 就是解决一类问题: $f[k]=\sum_{i\oplus j=k}a[i]*b[j]$ 基本思想和FFT类似. 首先 ...
- LG4717 【模板】快速沃尔什变换
题意 题目描述 给定长度为\(2^n\)两个序列\(A,B\),设\(C_i=\sum_{j\oplus k}A_jB_k\)分别当\(\oplus\)是or,and,xor时求出C 输入输出格式 输 ...
- 快速沃尔什变换 FWT 学习笔记【多项式】
〇.前言 之前看到异或就担心是 FWT,然后才开始想别的. 这次学了 FWT 以后,以后判断应该就很快了吧? 参考资料 FWT 详解 知识点 by neither_nor 集训队论文 2015 集合幂 ...
随机推荐
- 【SoDiaoEditor更新啦】--谨以献给那些还在医疗行业奋斗的小伙伴们
先放github地址:https://github.com/tlzzu/SoDiaoEditor.v2 首先,这不是愚人节的玩笑,,, 本想着三月底发布来着,结果昨天又在兼容性上调出几个bug,然后拖 ...
- Visual Studio 2015 Professional 破解
Visual Studio 2015 Professional 版本 破解序列号:HMGNV-WCYXV-X7G9W-YCX63-B98R2
- async/await的多线程问题
今天尝试把.net4.5新增的异步编程模型async/await加入自己的框架,因为从第一印象看,使用async/await的写法实在太方便了,以同步代码的方式写异步流程,写起来更顺畅,不容易打断思路 ...
- 老李分享:《Linux Shell脚本攻略》 要点(三)
老李分享:<Linux Shell脚本攻略> 要点(三) 1.生产任意大小的文件 [root@localhost dd_test]#[root@localhost dd_test]# ...
- my first blogs(我的处女博)
末夏的夕阳送走一批批下班的人,些许的轻风给一天烦躁的心带来一丝丝的清凉.我倒是挺喜欢在这种天气,提前下了公交车然后漫步回家.这样我能多点时间回顾一天的事情,俗话说是思考人生. 不知不觉毕业两年多了,在 ...
- 浩哥解析MyBatis源码(七)——DataSource数据源模块之托管数据源
原创作品,可以转载,但是请标注出处地址:http://www.cnblogs.com/V1haoge/p/6675700.html 1 回顾 之前介绍的非池型与池型数据源都是MyBatis自己定义的内 ...
- user-modify属性,让html标签可以编辑
其实这只是一个很小的需求,但是写着写着发现干货越来越多,所以特意给大家分享一下. 项目需要做一个类似QQ聊天输入的效果 有的同学说,这不是很简单吗?一开始我也这么感觉 :) 观察需求 1.整体固定在底 ...
- Redis数据类型之字符串String
String类型是Redis中最基本也最简单的一种数据类型 首先演示一些常用的命令 一.SET key value 和GET key SET key value 和 GET key 设置键值和获取值 ...
- JavaScript Array 技巧
filter():返回该函数会返回true的项组成的数组 ,,,,]; var result = num.filter(function(item,index,array){ ); }) consol ...
- Git托管
前面的话 本文将主要介绍如何使用Github来托管Git服务 SSH 大多数Git服务器都会选择使用SSH公钥来进行授权.系统中的每个用户都必须提供一个公钥用于授权 首先先确认一下是否已经有一个公钥了 ...