iris数据集 决策树实现分类并画出决策树
# coding=utf-8 import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn import tree
from sklearn.metrics import precision_recall_curve #准确率与召回率
import numpy as np
#import graphviz import os
os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz2.38/bin/' def get_data():
file_path = "Iris.xlsx" data = pd.read_excel(file_path)
loandata = pd.DataFrame(data)
ncol = (len(loandata.keys()))
print(ncol)
# l = list(data.head(0)) #获取表头
# print(l) feature1 = []
for i in range(ncol-1):
feature1.append("feature"+str(i))
print(feature1)
iris_x = data.iloc[1:, :ncol-1]#此处有冒号,不显示最后一列
iris_y = data.iloc[1:,ncol-1]#此处没有冒号,直接定位 '''计算到底有几个类别'''
from collections import Counter
counter = Counter(iris_y)
con = len(counter)
print(counter.keys())
class_names = []
for i in range(con):
class_names.append(list(counter.keys())[i])
x_train, x_test, y_train, y_test = train_test_split(iris_x,iris_y)
print(x_train)
print(y_test)
# return x_train, x_test, y_train, y_test #def dtfit(x_train, x_test, y_train, y_test): clf = tree.DecisionTreeClassifier()
clf = clf.fit(x_train,y_train)
predict_data = clf.predict(x_test)
predict_proba = clf.predict_proba(x_test)
from sklearn import metrics
# Do classification task,
# then get the ground truth and the predict label named y_true and y_pred
classify_report = metrics.classification_report(y_test, clf.predict(x_test))
confusion_matrix = metrics.confusion_matrix(y_train, clf.predict(x_train))
overall_accuracy = metrics.accuracy_score(y_train, clf.predict(x_train))
acc_for_each_class = metrics.precision_score(y_train,clf.predict(x_train), average=None)
overall_accuracy = np.mean(acc_for_each_class)
print(classify_report) import pydotplus
dot_data = tree.export_graphviz(clf, out_file=None,feature_names=feature1, filled=True, rounded=True, special_characters=True,precision = 4)
graph = pydotplus.graph_from_dot_data(dot_data)
graph.write_pdf("workiris.pdf")
return classify_report if __name__ == "__main__":
x = get_data()
#dtfit(x_train, x_test, y_train, y_test)
数据地址:http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
保存后注意填写表头
iris数据集 决策树实现分类并画出决策树的更多相关文章
- scikit-learn机器学习(四)使用决策树做分类,并画出决策树,随机森林对比
数据来自 UCI 数据集 匹马印第安人糖尿病数据集 载入数据 # -*- coding: utf-8 -*- import pandas as pd import matplotlib matplot ...
- ROC曲线是通过样本点分类概率画出的 例如某一个sample预测为1概率为0.6 预测为0概率0.4这样画出来,此外如果曲线不是特别平滑的话,那么很可能存在过拟合的情况
ROC和AUC介绍以及如何计算AUC from:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ ROC(Receiver Operat ...
- Spark Mllib里决策树二元分类使用.areaUnderROC方法计算出以AUC来评估模型的准确率和决策树多元分类使用.precision方法以precision来评估模型的准确率(图文详解)
不多说,直接上干货! Spark Mllib里决策树二元分类使用.areaUnderROC方法计算出以AUC来评估模型的准确率 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的 ...
- 85、使用TFLearn实现iris数据集的分类
''' Created on 2017年5月21日 @author: weizhen ''' #Tensorflow的另外一个高层封装TFLearn(集成在tf.contrib.learn里)对训练T ...
- Iris数据集实战
本次主要围绕Iris数据集进行一个简单的数据分析, 另外在数据的可视化部分进行了重点介绍. 环境 win8, python3.7, jupyter notebook 目录 1. 项目背景 2. 数据概 ...
- javascript实现朴素贝叶斯分类与决策树ID3分类
今年毕业时的毕设是有关大数据及机器学习的题目.因为那个时间已经步入前端的行业自然选择使用JavaScript来实现其中具体的算法.虽然JavaScript不是做大数据处理的最佳语言,相比还没有优势,但 ...
- 机器学习笔记2 – sklearn之iris数据集
前言 本篇我会使用scikit-learn这个开源机器学习库来对iris数据集进行分类练习. 我将分别使用两种不同的scikit-learn内置算法--Decision Tree(决策树)和kNN(邻 ...
- CART决策树(分类回归树)分析及应用建模
一.CART决策树模型概述(Classification And Regression Trees) 决策树是使用类似于一棵树的结构来表示类的划分,树的构建可以看成是变量(属性)选择的过程,内部节 ...
- 利用ggplot2画出各种漂亮图片详细教程
1.Why use ggplot2 ggplot2是我见过最human friendly的画图软件,这得益于Leland Wilkinson在他的著作<The Grammar of Graphi ...
随机推荐
- zxing .net 多种条码格式的生成
下载地址:http://zxingnet.codeplex.com/ zxing.net是.net平台下编解条形码和二维码的工具,使用非常方便. 本文主要说明一下多种类型条码的生成. 适用的场景,标签 ...
- 微信小程序节点查询方法:wx.createSelectorQuery()的使用场景与注意事项
小程序由于内置于微信,这使得它有了得天独厚的宣传和使用优势,本着学习的心态,我在官网上看了一遍开发文档,大致得出小程序框架的设计模式与使用注意事项(重点来了,其实开发文档某些方面叙述的并不仔细,甚至存 ...
- 常见的Linux 的命令
rm命令 -f :就是force的意思,忽略不存在的文件,不会出现警告消息 -i :互动模式,在删除前会询问用户是否操作 -r :递归删除,最常用于目录删除,它是一个非常危险的参数 如: rm -i ...
- input表单的type属性详解,不同type不同属性之间区别
目标:详解表单input标签type属性常用的属性值 一.input标签和它的type属性 PS:input 元素可以用来生成一个供用户输入数据的简单文本框. 在默认的情况下, 什么样的数据均可以输入 ...
- GO开发[三]:fmt,strings,strconv,指针,控制结构
一.fmt包 %v 值的默认格式表示.当输出结构体时,扩展标志(%+v)会添加字段名 %#v 值的Go语法表示 %T 值的类型的Go语法表示 %% 百分号 %t 单词true或false %b 表示为 ...
- 集合并发修改异常-foreach的时候不可修改值
直接上代码: 无意间发现的://这个方法本身是为后面的集合去掉前面集合的重复数据一直报错,并发修改异常,仔细看mainList正在迭代循环,然后我进行了remove操作,这个时候就会报这个错.故:总结 ...
- ABP架构学习系列
ABP实践学习系列 ABP Zero 本地化语言的初始化和扩展 ABP Zero 导航菜单之角色权限 ABP Zero示例项目问题总结 ABP后台服务之作业调度Quartz.NET ABP架构学 ...
- 使用Anaconda搭建TensorFlow-GPU环境
前言: 对于深度学习来说,各种框架torch,caffe,keras,mxnet,tensorflow,pandapanda环境要求各一,如果我们在一台服务器上部署了较多的这样的框架,那么各种莫名的冲 ...
- 使用c语言实现linux数据库的操作
前言:上一篇讲解了linux下使用命令行操作数据库,这篇继续讲解怎么使用c语言实现linux数据库的操作. 使用c语言实现环境搭建:既然我们要使用c语言实现linux数据库操作,那么首先我们得先把数据 ...
- Redis 学习开发笔记
Redis特点: 1.速度快 2.支持丰富的数据类型:字符串.哈希列表.集合 3.操作具有原子性,所有Redis操作都是原子操作 4.多实用工具,可应用如缓存,消息队列,应用程序中任何短期数据,如we ...