初识Tensorboard
1.什么是Tensorboard?
PPT设计原则中有这样一条,叫“文不如表,表不如图”,可见图表在表达中更为直观、明确。程序设计中也是一样,我们经常用图表来描述程序的结构和流程,本文所述的Tensorboard就是Tensorflow提供的一款强大的可视化工具,可以借助图表更方便地进行Tensorflow程序的理解、调试和优化。
左面的数据流图cool吗?它是Tensorflow官网上给出的demo,下面,本文就结合一个具体的例子,介绍下Tensorboard的基本使用。
2. 如何使用Tensorboard?
Tensorboard的使用可大体归结为如下几步:
1) 在构建graph的过程中,记录你想要追踪的Tensor
2) Session会话运行上一步骤中的记录
3) 查看可视化效果
那么如何具体操作呢?先走一波示例代码,一个用三层神经网络实现回归问题的小例子
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, n_layer, activation_function = None):
# add one more layer and return the output of this layer
layer_name = 'layer%s' % n_layer
with tf.name_scope('layer'):
with tf.name_scope('weights'):
Weights = tf.Variable(tf.random_normal([in_size, out_size]), name = 'W')
tf.summary.histogram(layer_name + '/weights', Weights)
with tf.name_scope('biases'):
biases = tf.Variable(tf.zeros([1,out_size]) + 0.1, name = 'b')
tf.summary.histogram(layer_name + '/biases', biases)
with tf.name_scope('Wx_plus_b'):
Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases, name = 'Wpb')
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
tf.summary.histogram(layer_name + '/outputs', outputs)
return outputs #define placeholder for inputs
with tf.name_scope('inputs'):
xs = tf.placeholder(tf.float32, [None, 1], name = 'x_input')
ys = tf.placeholder(tf.float32, [None, 1], name = 'y_input') # make up some real data
x_data = np.linspace(-1.0, 1.0, 300, dtype = np.float32)[:,np.newaxis]
noise = np.random.normal(0.0, 0.05, x_data.shape)
y_data = np.square(x_data) + 0.5 + noise # add hidden layer and output layer
l1 = add_layer(xs, 1, 10, n_layer = 1, activation_function = tf.nn.relu)
prediction = add_layer(l1, 10, 1, n_layer = 2, activation_function = None) # the error between prediction and real data
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices = [1]), name = 'L')
tf.summary.scalar('loss', loss)
with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.show(block = False)
merged =tf.summary.merge_all()
writer = tf.summary.FileWriter('/tmp/tensorlogs/ex5', sess.graph)
for i in range(1000):
sess.run(train_step, feed_dict = {xs : x_data, ys : y_data})
if i % 50 == 0:
# print(i, sess.run(loss, feed_dict = {xs : x_data, ys : y_data}))
try:
ax.lines.remove(lines[0])
except Exception:
pass
result, prediction_value = sess.run([merged, prediction], feed_dict = {xs : x_data, ys : y_data})
lines = ax.plot(x_data, prediction_value, 'r-', lw = 5)
plt.pause(0.1)
writer.add_summary(result, i)
下面具体分解上述的3个步骤
1) 在上述示例中用了tf.summary.histogram()和tf.summary.scalar()记录要追踪的Tensor,前者可汇总和记录标量数据,如41行的loss;后者可汇总和记录变量为直方图,如11行的Weights。此外,tf.summary还可汇总记录图片(images),音频(Audio)等内容。
2) 在Session中运行之前,要将上述所有汇总记录做一个合并,以便统一运行,如52行的merged所示,还要指定运行后存放数据记录的日志文件的位置,如53行的writer所示。接下来,就可以通过运行获取数据记录了,如62行的result所示,这里为了简洁,将result和prediction_value放在了一起运行,也可以拆成两行执行。程序要进行多次训练,如54行的for所示,每隔50次记录下追踪数据,如56行if所示,每次记录通过writer.add_summary()添加到日志文件中。
3) 程序运行结束后,打开终端,输入tensorboard --logdir='path',其中的path为指定的日志文件存放路径,如53行'/tmp/tensorlogs/ex5',运行后会看到下图所示
在浏览器的地址栏中输入上图中所示的地址http://David:6006,就会看到如下图所示的tensorboard图表:
graph: 程序图的结构

scalars: 损失函数的值随着训练次数的增加逐步下降

distributions: 隐藏层和输出层参数的分布图

histograms: 隐藏层和输出层参数的直方图

3. 总结
tensorboard的使用对于程序的理解、分析和优化都很有帮助,本文结合一个小的程序例子介绍了tensorboard的基本使用,更多内容可参看官方文档中关于Mnist数据集的代码实例。本文的实验环境为ubuntu16.04+tensorflow1.1。
初识Tensorboard的更多相关文章
- 通俗易懂之Tensorflow summary类 & 初识tensorboard
前面学习的cifar10项目虽小,但却五脏俱全.全面理解该项目非常有利于进一步的学习和提高,也是走向更大型项目的必由之路.因此,summary依然要从cifar10项目说起,通俗易懂的理解并运用sum ...
- TensorFlow学习(1)-初识
初识TensorFlow 一.术语潜知 深度学习:深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法. 深度学 ...
- Android动画效果之初识Property Animation(属性动画)
前言: 前面两篇介绍了Android的Tween Animation(补间动画) Android动画效果之Tween Animation(补间动画).Frame Animation(逐帧动画)Andr ...
- 初识Hadoop
第一部分: 初识Hadoop 一. 谁说大象不能跳舞 业务数据越来越多,用关系型数据库来存储和处理数据越来越感觉吃力,一个查询或者一个导出,要执行很长 ...
- python学习笔记(基础四:模块初识、pyc和PyCodeObject是什么)
一.模块初识(一) 模块,也叫库.库有标准库第三方库. 注意事项:文件名不能和导入的模块名相同 1. sys模块 import sys print(sys.path) #打印环境变量 print(sy ...
- 初识IOS,Label控件的应用。
初识IOS,Label控件的应用. // // ViewController.m // Gua.test // // Created by 郭美男 on 16/5/31. // Copyright © ...
- UI篇(初识君面)
我们的APP要想吸引用户,就要把UI(脸蛋)搞漂亮一点.毕竟好的外貌是增进人际关系的第一步,我们程序员看到一个APP时,第一眼就是看这个软件的功能,不去关心界面是否漂亮,看到好的程序会说"我 ...
- Python导出Excel为Lua/Json/Xml实例教程(一):初识Python
Python导出Excel为Lua/Json/Xml实例教程(一):初识Python 相关链接: Python导出Excel为Lua/Json/Xml实例教程(一):初识Python Python导出 ...
- 初识SpringMvc
初识SpringMvc springMvc简介:SpringMVC也叫Spring Web mvc,属于表现层的框架.Spring MVC是Spring框架的一部分,是在Spring3.0后发布的 s ...
随机推荐
- Java设计模式:代理模式(二)
承接上文 三.计数代理 计数代理的应用场景是:当客户程序需要在调用服务提供者对象的方法之前或之后执行日志或者计数等额外功能时,就可以用到技术代理模式.计数代理模式并不是把额外操作的代码直接添加到原服务 ...
- Patterns for application development with ASP.NET Core
此文章翻译自 NDC { London } 16-20 January 2017 上, Damian Edwards和David Fowler的演讲,如果翻译不周,请大家指出错误. Logging 生 ...
- Linux防火墙配置—SNAT2
1.实验目标 以实验"Linux防火墙配置-SNAT1"为基础,为网关增加外网IP地址,为eth1创建虚拟接口,使外网测试主机在Wireshark中捕获到的地址为eth1虚拟接口的 ...
- android奋战的一周
移动开发项目终于开始了,我也开始紧张起来了,就靠着培训时候学的一知半解的知识,作为一个主力不得不逼着自己不停的做实验,不停的学习. 有辛苦就有回报,我也对android开发中整体的框架有了些许的了解. ...
- [第一阶段] Python学习
首先声明一下,我这个学习计划是关于学习Python的. 先说一下起因:我自己接触Python算是很久了,目前仍没学会,很失败,很惭愧.所以这次一方面简单分析一下自学会碰到的问题:另一方便,我想到了一种 ...
- openwrt通过libcurl上传图片,服务器端通过PHP接收文件
一.客户端文件上传 libcurl上传文件有两种方式: 1.直接上传文件,类似form表单<input type=”file” />,<form enctype=”multipart ...
- codeforce vk cup2017
D. k-Interesting Pairs Of Integers time limit per test 2 seconds memory limit per test 256 megabytes ...
- H5游戏见缝插针开发
中秋节马上就要来临,公司开发了一个h5小游戏叉月饼,其实就是游戏“见缝插针”的翻版.这个游戏的开发任务落到了我的头上... 一 游戏介绍 游戏场景基本如下所示: 二 所用工具 这次的开 ...
- pod lib lint 遇到的问题
在pod lib lint(Xcode 8.3.2)校验组件是否有效的时候报了如下错误: - ERROR | [iOS] unknown: Encountered an unknown error ( ...
- 如何选择版本控制系统 ---为什么选择Git版本控制系统
版本控制系统 "代码"作为软件研发的核心产物,在整个开发周期都在递增,不断合入新需求以及解决bug的新patch,这就需要有一款系统,能够存储.追踪文件的修改历史,记录多个版本的开 ...