Family Name List

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 882    Accepted Submission(s): 271

Problem Description
Kong belongs to a huge family. Recently he got a family name list which lists all men (no women) in his family over many generations. 



The list shows that the whole family has a common ancestor, let's call him Mr. X. Of course, everybody except Mr.X in the list is Mr. X's descendant. Everybody's father is shown in the list except that Mr. X's father is not recorded. We define that Mr. X's
generation number is 0. His son's generation number is 1.His grandson's generation number is 2, and so on. In a word, everybody's generation number is 1 smaller than his son's generation number. Everybody's generation number is marked in some way in the list.



Now Kong is willing to pay a lot of money for a program which can re-arrange the list as he requires ,and answer his questions such as how many brothers does a certain man have, etc. Please write this program for him.
 
Input
There are no more than 15 test cases. 

For each test case:

The first line is an integer N( 1 <= N <= 30,000), indicating the number of names in the list.

The second line is the name of Mr. X.

In the next N-1 lines, there is a man's name in each line. And if the man's generation number is K, there are K dots( '.') before his name.



Please note that :

1) A name consists of only letters or digits( '0'-'9').

2) All names are unique.

3) Every line's length is no more than 60 characters.

4) In the list, a man M's father is the closest one above M whose generation number is 1 less than M.

5) For any 2 adjacent lines in the list, if the above line's generation number is G1 and the lower line' s generation number is G2, than G2 <= G1 +1 is guaranteed. 



After the name list, a line containing an integer Q(1<=Q<=30,000) follows, meaning that there are Q queries or operations below.



In the Next Q lines, each line indicates a query or operation. It can be in the following 3 formats:

1) L

Print the family list in the same format as the input, but in a sorted way. The sorted way means that: if A and B are brothers(cousins don’t count), and A's name is alphabetically smaller than B's name, then A must appear earlier than B. 

2) b name

Print out how many brothers does "name" have, including "name" himself.

3) c name1 name2

Print out the closest common ancestor of "name1" and "name2". "Closest" means the generation number is the largest. Since Mr. X has no ancestor in the list, so it's guaranteed that there is no question asking about Mr. X's ancestor. 



The input ends with N = 0.
 
Output
Already mentioned in the input.
 
Sample Input
9
Kongs
.son1
..son1son2
..son1son1
...sonkson2son1
...son1son2son2
..son1son3
...son1son3son1
.son0
7
L
b son1son3son1
b son1son2
b sonkson2son1
b son1
c sonkson2son1 son1son2son2
c son1son3son1 son1son2
0
 
Sample Output
Kongs
.son0
.son1
..son1son1
...son1son2son2
...sonkson2son1
..son1son2
..son1son3
...son1son3son1
1
3
2
2
son1son1
son1
 
Source
 
Recommend
 
题意:
给你一棵树。

有三种操作。

1.输出树的dfs序。

字典序小的先输出。

2.输出一个结点的父亲有多少儿子。包含自己。
3.输出u,v的LCA。

思路:
这题输入比較蛋疼。我是用一个栈来建树的。

不知道有其他什么高级方法没。

然后对于操作1.因为要字典序小的的先dfs。那么仅仅好用 不是非常熟悉的vector存边了。然后对边按名字字典序排序。

然后dfs一次把答案存起来。对于2记录下一个结点的父亲是谁即可了。

对于3.tarjan离线处理。这题有个坑点就是LCA不能是自己。over。

具体见代码:
#include<cstdio>
#include<vector>
#include<algorithm>
#include<string>
#include<cstring>
#include<iostream>
#include<map>
using namespace std;
const int maxn=30010;
int cnt,ptr,pp,vis[maxn],ty[maxn],aans[maxn];
int st[maxn],rk[maxn],fa[maxn],pa[maxn],uu[maxn],vv[maxn];
char na[100];
vector<int> G[maxn];
string name[maxn],ans[maxn];
map<string,int> mp;
struct node
{
int v,id;
node *next;
} ed[maxn<<1],*head[maxn];
void adde(int u,int v,int id)
{
ed[ptr].v=v;
ed[ptr].id=id;
ed[ptr].next=head[u];
head[u]=&ed[ptr++];
}
bool cmp(int a,int b)
{
return name[a]<name[b];
}
void dfs(int u)
{
string op=".";
ans[pp]="";
for(int i=0;i<rk[u];i++)
ans[pp]+=op;
ans[pp++]+=name[u];
for(int i=0;i<G[u].size();i++)
{
pa[G[u][i]]=u;
dfs(G[u][i]);
}
}
int getfa(int x)
{
if(fa[x]==x)
return x;
return fa[x]=getfa(fa[x]);
}
void tarjan(int u)
{
vis[u]=1,fa[u]=u;
for(node *p=head[u];p!=NULL;p=p->next)
{
if(vis[p->v])
aans[p->id]=getfa(p->v);
}
for(int i=0;i<G[u].size();i++)
{
tarjan(G[u][i]);
fa[G[u][i]]=u;
}
}
int main()
{
int i,j,n,m,tp,ct,id,u,v;
string aa,bb;
char cmd[20]; while(scanf("%d",&n),n)
{
for(i=0;i<=n;i++)
G[i].clear();
mp.clear();
tp=cnt=1;
st[0]=0,rk[0]=-1;
for(i=0;i<n;i++)
{
scanf("%s",na);
ct=0;
for(j=0;na[j];j++)
if(na[j]=='.')
ct++;
else
break;
string nna(na+ct);
//cout<<nna<<endl;
if(!mp.count(nna))
{
name[cnt]=nna;
rk[cnt]=ct;
mp[nna]=cnt++;
}
id=mp[nna];
while(rk[st[tp-1]]>=rk[id])
tp--;
G[st[tp-1]].push_back(id);
st[tp++]=id;
}
for(i=1;i<=n;i++)
sort(G[i].begin(),G[i].end(),cmp);
pp=0;
dfs(1);
ptr=0;
memset(head,0,sizeof head);
memset(vis,0,sizeof vis);
scanf("%d",&m);
for(i=0;i<m;i++)
{
scanf("%s",cmd);
if(cmd[0]=='L')
ty[i]=0;
else if(cmd[0]=='b')
{
ty[i]=1;
cin>>aa;
id=mp[aa];
aans[i]=G[pa[id]].size();
}
else
{
ty[i]=2;
cin>>aa>>bb;
u=mp[aa],v=mp[bb];
uu[i]=u,vv[i]=v;
adde(u,v,i);
adde(v,u,i);
}
}
tarjan(1);
for(i=0;i<m;i++)
{
if(ty[i]==0)
{
for(j=0;j<n;j++)
cout<<ans[j]<<endl;
}
else if(ty[i]==1)
printf("%d\n",aans[i]);
else
{
if(aans[i]==uu[i]||aans[i]==vv[i])
aans[i]=pa[aans[i]];
cout<<name[aans[i]]<<endl;
}
}
}
return 0;
}

hdu 4409 Family Name List(LCA&amp;有坑点)的更多相关文章

  1. hdu 5274 Dylans loves tree(LCA + 线段树)

    Dylans loves tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  2. hdu 6203 ping ping ping(LCA+树状数组)

    hdu 6203 ping ping ping(LCA+树状数组) 题意:给一棵树,有m条路径,问至少删除多少个点使得这些路径都不连通 \(1 <= n <= 1e4\) \(1 < ...

  3. HDU 4409 Family Name List --乱搞、LCA

    题意: 给出一些名字,名字间有父子关系,有三种操作: 1.按祖先到后代,兄弟间按字典序由小到大排序,然后输出 2.求某个节点的兄弟节点有多少个,包括自己(注意,根节点的兄弟节点是1) 3.求节点a和b ...

  4. hdu 4409 LCA

    思路:就是个比较裸的LCA了,不过要注意的是,如果a和b的公共祖先是a,那么答案就是farther[a]. #include<cstring> #include<cmath> ...

  5. HDU 3078:Network(LCA之tarjan)

    http://acm.hdu.edu.cn/showproblem.php?pid=3078 题意:给出n个点n-1条边m个询问,每个点有个权值,询问中有k,u,v,当k = 0的情况是将u的权值修改 ...

  6. HDU 2874 Connections between cities (LCA)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2874 题意是给你n个点,m条边(无向),q个询问.接下来m行,每行两个点一个边权,而且这个图不能有环路 ...

  7. 【HDU 4547 CD操作】LCA问题 Tarjan算法

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4547 题意:模拟DOS下的cd命令,给出n个节点的目录树以及m次查询,每个查询包含一个当前目录cur和 ...

  8. HDU 5452 Minimum Cut(LCA)

    http://acm.hdu.edu.cn/showproblem.php?pid=5452 题意: 有一个连通的图G,先给出图中的一棵生成树,然后接着给出图中剩余的边,现在要删除最少的边使得G不连通 ...

  9. HDU 2460 Network(桥+LCA)

    http://acm.hdu.edu.cn/showproblem.php?pid=2460 题意:给出图,求每次增加一条边后图中桥的数量. 思路: 先用tarjan算法找出图中所有的桥,如果lowv ...

随机推荐

  1. 谷歌浏览器Chrome播放rtsp视频流解决方案

    找半天,HTML5的可以支持RTMP 但是无法播放RTSP,flash也止步于RTMP,最后同事推荐了个开源的好东东 VLC ,请教谷歌大神之后,这货果然可以用来让各浏览器(IE activex方式, ...

  2. JavaScript系列-----对象基于哈希存储(<Key,Value>之Value篇) (3)

    JavaScript系列-----Objectj基于哈希存储<Key,Value>之Value 1.问题提出 在JavaScript系列-----Object之基于Hash<Key, ...

  3. DNA序列对齐问题

    问题描述: 该问题在算法导论中引申自求解两个DNA序列相似度的问题. 可以从很多角度定义两个DNA序列的相似度,其中有一种定义方法就是通过序列对齐的方式来定义其相似度. 给定两个DNA序列A和B,对齐 ...

  4. openpose模型在AI challenge人体骨骼关键点检测的表现

    因为之前正好看了CMU在CVPR2017上的论文<Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields>, ...

  5. PHP设计模式之组合模式

    当我们的一个对象可能代表一个单一的实体,或者一个组合的实体,但是仍然需要通过同样的方式被使用时,这种情形则适合使用组合模式的设计. 组合模式是一种结构型模式. 当看了书上的解释之后,并不是很理解,遂去 ...

  6. Java提高十六:TreeMap深入分析

    上一篇容器元素比较Comparable&Comparator分析的时候,我们提到了TreeMap,但没有去细致分析它,只是说明其在添加元素的时候可以进行比较,从而使得集合有序,但是怎么做的呢? ...

  7. 2017湖湘杯Writeup

    RE部分 0x01 Re4newer 解题思路: Step1:die打开,发现有upx壳. Step2:脱壳,执行upx -d 文件名即可. Step3:IDA打开,shift+F12看字符串. 点进 ...

  8. python学习笔记 python实现k-means聚类

    # -*- coding: utf-8 -*- """ Created on Thu Mar 16 14:52:58 2017 @author: Jarvis " ...

  9. webpack 1.x 学习总结

    webpack介绍(from github): A bundler for javascript and friends. Packs many modules into a few bundled ...

  10. git使用(上)-----基本的方法

    git应该是一项必须要掌握的工具.先简述它和SVN的区别 SVN是集中式版本控制系统,版本库是集中放在中央服务器的,而干活的时候,用的都是自己的电脑,所以首先要从中央服务器哪里得到最新的版本,然后干活 ...