MapReduce执行过程
Mapper任务的执行过程:
- 第一阶段是把输入文件按照一定的标准分片(InputSplit),每个输入片的大小是固定的。默认情况下,输入片(InputSplit)的大小与数据块(Block)的大小是相同的。如果数据块(Block)的大小是默认值64MB,输入文件有两个,一个是32MB,一个是72MB。那么小的文件是一个输入片,大文件会分为两个数据块,那么是两个输入片。一共产生三个输入片。每一个输入片由一个Mapper进程处理。这里的三个输入片,会有三个Mapper进程处理。
- 第二阶段是对输入片中的记录按照一定的规则解析成键值对。有个默认规则是把每一行文本内容解析成键值对。“键”是每一行的起始位置(单位是字节),“值”是本行的文本内容。
- 第三阶段是调用Mapper类中的map方法。第二阶段中解析出来的每一个键值对,调用一次map方法。如果有1000个键值对,就会调用1000次map方法。每一次调用map方法会输出零个或者多个键值对。
- 第四阶段是按照一定的规则对第三阶段输出的键值对进行分区。比较是基于键进行的。比如我们的键表示省份(如北京、上海、山东等),那么就可以按照不同省份进行分区,同一个省份的键值对划分到一个区中。默认是只有一个区。分区的数量就是Reducer任务运行的数量。默认只有一个Reducer任务。
- 第五阶段是对每个分区中的键值对进行排序。首先,按照键进行排序,对于键相同的键值对,按照值进行排序。比如三个键值对<2,2>、<1,3>、<2,1>,键和值分别是整数。那么排序后的结果是<1,3>、<2,1>、<2,2>。如果有第六阶段,那么进入第六阶段;如果没有,直接输出到本地的linux文件中。
- 第六阶段是对数据进行归约处理,也就是reduce处理。键相等的键值对会调用一次reduce方法。经过这一阶段,数据量会减少。归约后的数据输出到本地的linxu文件中。本阶段默认是没有的,需要用户自己增加这一阶段的代码。
Reducer任务的执行过程
- 第一阶段是Reducer任务会主动从Mapper任务复制其输出的键值对。Mapper任务可能会有很多,因此Reducer会复制多个Mapper的输出。
- 第二阶段是把复制到Reducer本地数据,全部进行合并,即把分散的数据合并成一个大的数据。再对合并后的数据排序。
- 第三阶段是对排序后的键值对调用reduce方法。键相等的键值对调用一次reduce方法,每次调用会产生零个或者多个键值对。最后把这些输出的键值对写入到HDFS文件中。
在整个MapReduce程序的开发过程中,最大的工作量是覆盖map函数和覆盖reduce函数。
----------------------------------------------------------------------------
map
1.读取输入文件,解析成<k,v>,每个<k,v>调用一次map
2.map()
3.分区(默认1)
4.排序、分组(shuffle)
5.规约(combine可选)
reduce
1.网络copy
2.reduce()(先排序)
3.输出
MapReduce执行过程的更多相关文章
- Hadoop MapReduce执行过程详解(带hadoop例子)
https://my.oschina.net/itblog/blog/275294 摘要: 本文通过一个例子,详细介绍Hadoop 的 MapReduce过程. 分析MapReduce执行过程 Map ...
- 分析MapReduce执行过程
分析MapReduce执行过程 MapReduce运行的时候,会通过Mapper运行的任务读取HDFS中的数据文件,然后调用自己的方法,处理数据,最后输出. Reducer任务会接收Mapper任务输 ...
- Hadoop学习之Mapreduce执行过程详解
一.MapReduce执行过程 MapReduce运行时,首先通过Map读取HDFS中的数据,然后经过拆分,将每个文件中的每行数据分拆成键值对,最后输出作为Reduce的输入,大体执行流程如下图所示: ...
- Hadoop MapReduce执行过程实例分析
1.MapReduce是如何执行任务的?2.Mapper任务是怎样的一个过程?3.Reduce是如何执行任务的?4.键值对是如何编号的?5.实例,如何计算没见最高气温? 分析MapReduce执行过程 ...
- 分析MapReduce执行过程+统计单词数例子
MapReduce 运行的时候,会通过 Mapper 运行的任务读取 HDFS 中的数据文件,然后调用自己的方法,处理数据,最后输出.Reducer 任务会接收 Mapper 任务输出的数据,作为自己 ...
- Hadoop mapreduce执行过程涉及api
资源的申请,分配过程略过,从开始执行开始. mapper阶段: 首先调用默认的PathFilter进行文件过滤,确定哪些输入文件是需要的哪些是不需要的,然后调用inputFormat的getSplit ...
- hadoop -- mapreduce执行过程
1.运行mapreduce程序 ---run2.本次运行将会生成呢个一个Job , 于是JobClient向JobTracker申请一个JobID 标识该Job.3.JobClient将Job需要的 ...
- MapReduce概述,原理,执行过程
MapReduce概述 MapReduce是一种分布式计算模型,运行时不会在一台机器上运行.hadoop是分布式的,它是运行在很多的TaskTracker之上的. 在我们的TaskTracker上面跑 ...
- MapReduce的原理及执行过程
MapReduce简介 MapReduce是一种分布式计算模型,是Google提出的,主要用于搜索领域,解决海量数据的计算问题. MR有两个阶段组成:Map和Reduce,用户只需实现map()和re ...
随机推荐
- RoutePrefix和Route 路由前缀
使用应用到某个控制器中所有操作的路由前缀来批注该控制器. web api /// <summary> ////// </summary> [RoutePrefix(" ...
- 学习笔记GAN001:生成式对抗网络,只需10步,从零开始到调试
生成式对抗网络(gennerative adversarial network,GAN),目前最火的非监督深度学习.一个生成网络无中生有,一个判别网络推动进化.学技术,不先着急看书看文章.先把Demo ...
- tomcat运行时JVM参数调整
进入tomcat/bin目录 catalina.bat 中加入set JAVA_OPTS=-Xms210m -Xmx256m -Xmn70m -XX:PermSize=150m -XX:MaxPerm ...
- Git初学二(SSH免密)
在管理Git项目上,初学者使用HTTPS直接克隆项目到本地是最方便的.但是之后的fetch和push代码需要输入账号和密码也是比较烦的. 这章在上一章的基础上,将HTTPS切换成SSH.SSH的优点就 ...
- java web面试技巧,数据库面试,java web轻量级开发面试教程
我最近看到一本比较好的讲java web方面面试的书,java web轻量级开发面试教程. 其中不仅用案例和视频讲述了Spring MVC,Hibernate, ORM等方面的技巧,而且还实际讲到了面 ...
- 最新spring官网(spring.io)下载方法
这里介绍的是用于WEB开发的spring-frame框架的下载方法. 如果想下载其他的spring产品,直接进入http://projects.spring.io,选择自己要的即可.下载方法同下. 要 ...
- 入侵拿下DVBBS php官网详细过程(图)
几 个月前,DVBBS php2.0暴了一个可以直接读出管理员密码的sql注入漏洞,当时这个漏洞出来的时候,我看的心痒,怎么还会有这么弱智的漏洞,DVBBS php2.0这套代码我还没仔细看过,于是5 ...
- [2017-08-28]Abp系列——业务异常与错误码设计及提示语的本地化
本系列目录:Abp介绍和经验分享-目录 前言 ABP中有个异常UserFriendlyException经常被使用,但是它所在的命名空间是Abp.UI,总觉得和展现层联系过于紧密,在AppServic ...
- wcf 上传文件报413,404和发布错误
上传文件错误: 其实要修改所有的服务,不管是服务端还是客户端,Binding那边增加一个没有设置名字的默认配置就OK了: <binding closeTimeout="00:10 ...
- 设置input框文字垂直居中和宽度
input { solid #999;height:22px; background:#ffffff; line-height:22px; margin:0px; padding:0px;/*表单输入 ...