Mapper任务的执行过程:

  • 第一阶段是把输入文件按照一定的标准分片(InputSplit),每个输入片的大小是固定的。默认情况下,输入片(InputSplit)的大小与数据块(Block)的大小是相同的。如果数据块(Block)的大小是默认值64MB,输入文件有两个,一个是32MB,一个是72MB。那么小的文件是一个输入片,大文件会分为两个数据块,那么是两个输入片。一共产生三个输入片。每一个输入片由一个Mapper进程处理。这里的三个输入片,会有三个Mapper进程处理。
  • 第二阶段是对输入片中的记录按照一定的规则解析成键值对。有个默认规则是把每一行文本内容解析成键值对。“键”是每一行的起始位置(单位是字节),“值”是本行的文本内容。
  • 第三阶段是调用Mapper类中的map方法。第二阶段中解析出来的每一个键值对,调用一次map方法。如果有1000个键值对,就会调用1000次map方法。每一次调用map方法会输出零个或者多个键值对。
  • 第四阶段是按照一定的规则对第三阶段输出的键值对进行分区。比较是基于键进行的。比如我们的键表示省份(如北京、上海、山东等),那么就可以按照不同省份进行分区,同一个省份的键值对划分到一个区中。默认是只有一个区分区的数量就是Reducer任务运行的数量。默认只有一个Reducer任务。
  • 第五阶段是对每个分区中的键值对进行排序。首先,按照键进行排序,对于键相同的键值对,按照值进行排序。比如三个键值对<2,2>、<1,3>、<2,1>,键和值分别是整数。那么排序后的结果是<1,3>、<2,1>、<2,2>。如果有第六阶段,那么进入第六阶段;如果没有,直接输出到本地的linux文件中。
  • 第六阶段是对数据进行归约处理,也就是reduce处理。键相等的键值对会调用一次reduce方法。经过这一阶段,数据量会减少。归约后的数据输出到本地的linxu文件中。本阶段默认是没有的,需要用户自己增加这一阶段的代码

Reducer任务的执行过程

  • 第一阶段是Reducer任务会主动从Mapper任务复制其输出的键值对。Mapper任务可能会有很多,因此Reducer会复制多个Mapper的输出。
  • 第二阶段是把复制到Reducer本地数据,全部进行合并,即把分散的数据合并成一个大的数据。再对合并后的数据排序。
  • 第三阶段是对排序后的键值对调用reduce方法。键相等的键值对调用一次reduce方法,每次调用会产生零个或者多个键值对。最后把这些输出的键值对写入到HDFS文件中。
  • 在整个MapReduce程序的开发过程中,最大的工作量是覆盖map函数和覆盖reduce函数。

----------------------------------------------------------------------------

map

1.读取输入文件,解析成<k,v>,每个<k,v>调用一次map

2.map()

3.分区(默认1)

4.排序、分组(shuffle)

5.规约(combine可选)

reduce

  1.网络copy

2.reduce()(先排序)

  3.输出

MapReduce执行过程的更多相关文章

  1. Hadoop MapReduce执行过程详解(带hadoop例子)

    https://my.oschina.net/itblog/blog/275294 摘要: 本文通过一个例子,详细介绍Hadoop 的 MapReduce过程. 分析MapReduce执行过程 Map ...

  2. 分析MapReduce执行过程

    分析MapReduce执行过程 MapReduce运行的时候,会通过Mapper运行的任务读取HDFS中的数据文件,然后调用自己的方法,处理数据,最后输出. Reducer任务会接收Mapper任务输 ...

  3. Hadoop学习之Mapreduce执行过程详解

    一.MapReduce执行过程 MapReduce运行时,首先通过Map读取HDFS中的数据,然后经过拆分,将每个文件中的每行数据分拆成键值对,最后输出作为Reduce的输入,大体执行流程如下图所示: ...

  4. Hadoop MapReduce执行过程实例分析

    1.MapReduce是如何执行任务的?2.Mapper任务是怎样的一个过程?3.Reduce是如何执行任务的?4.键值对是如何编号的?5.实例,如何计算没见最高气温? 分析MapReduce执行过程 ...

  5. 分析MapReduce执行过程+统计单词数例子

    MapReduce 运行的时候,会通过 Mapper 运行的任务读取 HDFS 中的数据文件,然后调用自己的方法,处理数据,最后输出.Reducer 任务会接收 Mapper 任务输出的数据,作为自己 ...

  6. Hadoop mapreduce执行过程涉及api

    资源的申请,分配过程略过,从开始执行开始. mapper阶段: 首先调用默认的PathFilter进行文件过滤,确定哪些输入文件是需要的哪些是不需要的,然后调用inputFormat的getSplit ...

  7. hadoop -- mapreduce执行过程

    1.运行mapreduce程序  ---run2.本次运行将会生成呢个一个Job , 于是JobClient向JobTracker申请一个JobID 标识该Job.3.JobClient将Job需要的 ...

  8. MapReduce概述,原理,执行过程

    MapReduce概述 MapReduce是一种分布式计算模型,运行时不会在一台机器上运行.hadoop是分布式的,它是运行在很多的TaskTracker之上的. 在我们的TaskTracker上面跑 ...

  9. MapReduce的原理及执行过程

    MapReduce简介 MapReduce是一种分布式计算模型,是Google提出的,主要用于搜索领域,解决海量数据的计算问题. MR有两个阶段组成:Map和Reduce,用户只需实现map()和re ...

随机推荐

  1. 利用mvc filterconfig属性实现权限验证

    好久没写过博客了,突然发现最后博客更新时间是2016年,感觉好长远 权限控制基本是所有cms系统或者进销存,或者几乎所有能和业务系统扯上关系的系统都要用上的一个模块,很多都想把这个模块独立出来,权限单 ...

  2. python -- 装饰器的高级应用

    装饰器和装饰器模式装饰器模式是面向对象的一种设计模式,支持将行为动态增加到已经存在的对象上.当装饰一个对象的时候,就表示独立与其他类实例对象,为该对象扩展了新的功能. python的装饰器不是装饰器模 ...

  3. windows server 2012 + sql server 2008 r2安装

    windows server 2012 r2  里面安装 sql server 2008 r2 问题总结 前提是 windows server 2012 r2 已经安装完成  ,(仅仅是安装完成 啥服 ...

  4. POI 自用API

    poi包下载 API 使用POI生成Excel,大家都是赞个.可是狐狸觉得毕竟不是微软的产品,使用没有C#语言的好用,方法还是存在极限的. 下面总结狐狸自己用过的方法: import org.apac ...

  5. zip7压缩

    7-zip 解压 1.引入依赖文件 sevenzipjbinding.jar sevenzipjbinding-Allwindows.jar <!-- https://mvnrepository ...

  6. 实现一个简单的Laravel的dd库

    前几天写了一个简单的Laravel的dd库. 为什么自己要写一个这样的库? Laravel本身已经实现了自己的输出dd函数,但是我之所以要写这样一个库,一来是因为Laravel本身对这个库的封装没办法 ...

  7. 玩一把JS的链式调用

    链式调用我们平常用到很多,比如jQuery中的$(ele).show().find(child).hide(),再比如angularjs中的$http.get(url).success(fn_s).e ...

  8. 配置VNC SERVER 远程访问

    1.安装软件包 # yum install tigervnc-server -y 2. 配置VNC用户 # vim /etc/sysconfig/vncservers VNCSERVERS=" ...

  9. 个人作业1——四则运算题目生成程序(基于C++)

    题目描述: 从<构建之法>第一章的 "程序" 例子出发,像阿超那样,花二十分钟写一个能自动生成小学四则运算题目的命令行 "软件",满足以下需求: 1 ...

  10. 201521123022 《Java程序设计》 第8周学习总结

    1.本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 2. 书面作业 Q1.List中指定元素的删除(题目4-1) Q1.1 实验总结 本题要求的是编写covnert ...