cs231n spring 2017 lecture2 Image Classification 听课笔记
1. 相比于传统的人工提取特征(边、角等),深度学习是一种Data-Driven Approach。深度学习有统一的框架,喂不同的数据集,可以训练识别不同的物体。而人工提取特征的方式很脆弱,换一个物体就要重新设计特征。
2. 描述图像之间相似程度,可以直接把每个对应像素做减法,然后把差的绝对值累加起来。这个差值的和越小,图片越接近。这是曼哈顿距离L1。
对应像素点的差值的平方累加再开平方,这是欧几里得距离L2。
L1和L2谁更好,这取决于具体问题。但一般来说,如果做差的向量有很具体的含义,比如对于员工分类,向量的每一个元素可能是“工作年限”、“工资”等,这种用L1会更好一点,因为L1更依赖坐标系。
3. K近领域算法是计算当前图片和所有候选图片的相似程度(或者说距离),最近的K个候选中,最多的那个标签就被作为当前图片的标签。K越大,对噪音越鲁棒(当然,也不是越大越好,会有最佳值)。
这种算法的缺点是:1)预测的复杂度太高,需要和每一个训练数据去比较。2)不鲁邦,测试数据和训练数据必须很像,如果有遮挡、旋转之类的,会误认为差别很大。3)维度问题,数据集必须在整个空间很稠密的分布,需要指数级增加的数据集,维度高的时候就很不现实。
4. Hyperparameter:预先设定的参数,而不是算法学习得到的。比如K近领域算法中的K。这种参数是很依赖具体问题的。如何设置Hyperparameter呢?
方案一:在训练集上表现最好的。这个方案是不行的,因为我们在乎的不是在训练集上表现怎么样,而是在乎在没见过的测试集上表现好。或者说方案一并不能保证很好的泛化能力。
方案二:把数据集分为训练集和测试集,选在测试集上最好的。这个方案的问题和方案一一样,依旧不能保证很好的泛化能力。
方案三:把数据集分为训练集、验证集、测试集,根据验证集上的表现来选择hyperparameter,然后再在测试集上评估。这种方案很好。对于很多hyperparameter的情况,验证集最好也设定的更大一点。
方案四:把数据集分为n组,交叉验证。随机挑选n-2组用来训练,1组用来验证,1组用来测试。这种方法比较适合小数据集,在深度学习中,由于训练的代价太大,所以用的也不算多这种方案。
5. 深度学习的框架像是拼乐高积木,而线性回归是最基本最好用的最广泛使用的积木。
6. 深度学习的训练过程就是训练出一组参数W,在预测x的时候计算y=f(x,W),W的每一行都是一个template,对应一个标签,计算出的y是一个向量,每个元素对应一个标签的相似程度,最大的值就对应预测出的标签。深度学习的框架反映在函数f上。
对于线性回归,f就是简单相乘,f(x,W) = Wx。
cs231n spring 2017 lecture2 Image Classification 听课笔记的更多相关文章
- cs231n spring 2017 lecture9 CNN Architectures 听课笔记
参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...
- cs231n spring 2017 lecture13 Generative Models 听课笔记
1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...
- cs231n spring 2017 lecture14 Reinforcement Learning 听课笔记
(没太听明白,下次重新听) 1. 增强学习 有一个 Agent 和 Environment 交互.在 t 时刻,Agent 获知状态是 st,做出动作是 at:Environment 一方面给出 Re ...
- cs231n spring 2017 lecture2 Image Classification
1. 相比于传统的人工提取特征(边.角等),深度学习是一种Data-Driven Approach.深度学习有统一的框架,喂不同的数据集,可以训练识别不同的物体.而人工提取特征的方式很脆弱,换一个物体 ...
- cs231n spring 2017 lecture9 CNN Architectures
参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...
- cs231n spring 2017 lecture11 Detection and Segmentation 听课笔记
1. Semantic Segmentation 把每个像素分类到某个语义. 为了减少运算量,会先降采样再升采样.降采样一般用池化层,升采样有各种"Unpooling"." ...
- cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记
1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...
- cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training 听课笔记
(没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比 ...
- cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning 听课笔记
1. 深度学习面临的问题: 1)模型越来越大,很难在移动端部署,也很难网络更新. 2)训练时间越来越长,限制了研究人员的产量. 3)耗能太多,硬件成本昂贵. 解决的方法:联合设计算法和硬件. 计算硬件 ...
随机推荐
- std::shared_ptr<void>的工作原理
前戏 先抛出两个问题 如果delete一个指针,但是它真实的类型和指针类型不一样会发生什么? 是谁调用了析构函数? 下面这段代码会发生什么有趣的事情? // delete_diff_type.cpp ...
- iOS开发富文本制作 图片和文字/NSMutableParagraphStyle/NSMutableAttributedString
/NSMutableParagraphStyle/NSMutableAttributedString 组合使 NSString * titlestr=@"日产GT-R"; NSMu ...
- 第2章KNN算法笔记_函数classify0
<机器学习实战>知识点笔记目录 K-近邻算法(KNN)思想: 1,计算未知样本与所有已知样本的距离 2,按照距离递增排序,选前K个样本(K<20) 3,针对K个样本统计各个分类的出现 ...
- 模板引擎(smarty)知识点总结三
阔别了几个月,小杨又来分享php知识.话不多说,言归正传,今天继续带来smarty的知识点. -----------------smarty assign append 详解 对于这两个的区别和联系 ...
- C#的发展已经15年了 。。。历史发展
C#是微软公司在2000年6月发布的一种新的编程语言,主要由安德斯·海尔斯伯格(Anders Hejlsberg)主持开发,它是第一个面向组件的编程语言,其源码会编译成msil再运行.它借鉴了Delp ...
- 关于VS2017安装的一点扩充说明(15.5)
其实逆天不推荐自己慢慢离线,找个离线包更新下再打包更快 Key:http://www.cnblogs.com/dunitian/p/4667038.html VS完整卸载工具:https://gith ...
- ConcurrentHashMap 从Java7 到 Java8的改变
一.关于分段锁 集合框架很大程度减少了java程序员的重复劳动,然而,在Java多线程环境中,以线程安全的方式使用集合类是一个首先考虑的问题. 越来越多的程序员了解到了ConcurrentHashMa ...
- python3 python2 import 的区别
https://stackoverflow.com/questions/12172791/changes-in-import-statement-python3
- 基于Dubbo的http自动测试工具分享
公司是采用微服务来做模块化的,各个模块之间采用dubbo通信.好处就不用提了,省略了之前模块间复杂的http访问.不过也遇到一些问题: PS: Github的代码示例还在整理中... 测试需要配合写消 ...
- ThreadLocal从源码到应用
最早接触到ThreadLocal是在阅读dianping的Cat-client,当时对它不是很理解,就搜索了一下,大概了解是一种解决线程安全问题的机制.现在再次阅读<实战java高并发程序设计& ...