Primitive Roots

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 583    Accepted Submission(s): 144

Problem Description
We say that integer x, 0 < x < n, is a primitive root modulo n if and only if the minimum positive integer y which makes xy = 1 (mod n) true is φ(n) .Here φ(n) is an arithmetic function that counts the totatives of n, that is, the positive integers less than or equal to n that are relatively prime to n. Write a program which given any positive integer n( 2 <= n < 1000000) outputs all primitive roots of n in ascending order.
 
Input
Multi test cases.
Each line of the input contains a positive integer n. Input is terminated by the end-of-file seperator.
Output
For each n, outputs all primitive roots of n in ascending order in a single line, if there is no primitive root for n just print -1 in a single line.
 
Sample Input
4 25
Sample Output
3 2 3 8 12 13 17 22 23
 
这个题大概就是要你把一个数的所有比它小的原根求出来。
所谓原根就是说,对于一个数n,xk≡1(mod n)的最小正整数k是φ(n),那么就称x是n的原根。
题目里面也讲了。φ(n)就是欧拉函数。
原根有很多美丽的性质。比如说:
  1. 有原根的数只有2,4,p^n,2p^n(p为质数,n为正整数)。
  2. 一个数的最小原根的大小是O(n0.25)的。
  3. 如果g为n的原根,则gd为n的原根的充要条件是(d,φ(n))=1;
  4. 如果n有原根,它的原根个数为φ(φ(n))。

那么来看一下这道题:

首先根据性质1,我们可以通过预处理质数,把不存在的情况判掉。

然后根据性质3,找到一个原根后枚举次方判gcd就可以了。

怎么找到一个原根呢?按照性质2傻傻去跑在这种多组数据的题目里是肯定不行的。

那么有一个喜大普奔的结论来帮助我们:

因为gφ(n)≡1(mod n),而对于比φ(n)小的数都不成立。

枚举φ(n)的质因子p,看gφ(n)/p在模意义下是否是1。

是1的话g就不是原根。

证明起来有点麻烦,这里就不写了。

所以找原根大概是O(n0.25/2)的。

找到之后枚举次方就可以了,因为是充分条件。

想剪个好枝却剪烂的某人在HDU上留下了5个WA... ...

#include    <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <cstring>
#include <queue>
#define LL long long int
#define ls (x << 1)
#define rs (x << 1 | 1)
#define MID int mid=(l+r)>>1
using namespace std; const int N = 1000000+10;
int P[N],vis[N],phi[N],tot,n; inline int gcd(int a,int b){return b?gcd(b,a%b):a;} inline void prepare()
{
phi[1]=1;
for(int i=2;i<N;++i){
if(!vis[i])P[++tot]=i,phi[i]=i-1;
for(int j=1;j<=tot;++j){
if(i*P[j]>=N)break;
vis[i*P[j]]=1;
if(i%P[j])phi[i*P[j]]=phi[i]*phi[P[j]];
else{phi[i*P[j]]=phi[i]*P[j];break;}
}
}
} inline int QPow(int d,int z,int Mod)
{
int ans=1;
for(;z;z>>=1,d=1ll*d*d%Mod)if(z&1)ans=1ll*ans*d%Mod;
return ans;
} inline bool check(int x)
{
if(x==2 || x==4)return 1;
if((x&1)^1)x>>=1;
for(int i=2;P[i]<=x;++i)
if(x%P[i]==0){
while(x%P[i]==0)x/=P[i];
return x==1?P[i]:0;
}
return 0;
} inline int get_rg(int fx)
{
int pt[1010],tt=0,Txd=phi[fx];
for(int i=1;P[i]*P[i]<=Txd;++i)
if(Txd%P[i]==0){
pt[++tt]=P[i];
while(Txd%P[i]==0)Txd/=P[i];
}
if(Txd!=1)pt[++tt]=Txd;
for(int i=2;i<=fx;++i)
if(QPow(i,phi[fx],fx)==1){
int flag=1;
for(int j=1;j<=tt;++j)
if(QPow(i,phi[fx]/pt[j],fx)==1){
flag=0;break;
}
if(flag)return i;
}
return 0;
} inline void work(int fx)
{
int tt=0,pr[N];
if(fx==2){printf("1\n");return;}
if(fx==4){printf("3\n");return;}
int T=check(fx);
if(!T){printf("-1\n");return;}
int g=get_rg(fx);
for(int i=1,k=g;i<phi[fx];++i,k=1ll*k*g%fx)
if(gcd(i,phi[fx])==1)
pr[++tt]=k;
sort(pr+1,pr+tt+1);
for(int i=1;i<tt;++i)
printf("%d ",pr[i]);
printf("%d",pr[tt]);
printf("\n");
} int main()
{
prepare();
while(scanf("%d",&n)!=EOF)work(n);
return 0;
}

  

HDU4992 求所有原根的更多相关文章

  1. 51nod1135(求最小原根)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1135 题意:中文题诶- 思路:设m是正整数,a是整数,若a模 ...

  2. 2018秦皇岛ccpc-camp Steins;Gate (原根+FFT)

    因为给定的模数P保证是素数,所以P一定有原根. 根据原根的性质,若\(g\)是\(P\)的原根,则\(g^k\)能够生成\([1,P-1]\)中所有的数,这样的k一共有P-2个. 则\(a_i*a_j ...

  3. 【bzoj2219-数论之神】求解x^a==b(%n)-crt推论-原根-指标-BSGS

    http://www.lydsy.com/JudgeOnline/problem.php?id=2219 弄了一个晚上加一个午休再加下午一个钟..终于ac..TAT 数论渣渣求轻虐!! 题意:求解 x ...

  4. fft练习

    数学相关一直都好弱啊>_< 窝这个月要补一补数学啦, 先从基础的fft补起吧! 现在做了 道. 窝的fft 模板 (bzoj 2179) #include <iostream> ...

  5. 【学习整理】NOIP涉及的数论 [updating]

    扩展欧几里得 求二元一次不定式方程 的一组解. int exgcd(int a,int b,int &x,int &y) { int t; ;y=;return a;} t=exgcd ...

  6. 【解高次同余方程】51nod1038 X^A Mod P

    1038 X^A Mod P 基准时间限制:1 秒 空间限制:131072 KB 分值: 320 X^A mod P = B,其中P为质数.给出P和A B,求< P的所有X. 例如:P = 11 ...

  7. XII Open Cup named after E.V. Pankratiev. GP of Eastern Europe (AMPPZ-2012)

    A. Automat $m$超过$1600$是没用的. 从后往前考虑,设$f[i][j][k]$表示考虑$[i,n]$这些物品,一共花费$j$元钱,买了$k$个物品的最大收益. 时间复杂度$O(n^5 ...

  8. HAOI(十二省联考)2019 qwq记

    \(\large{Day\ -1}:\) 放假了,白天大概是抱着最后一次在机房的心态复习着板子过去的.看着机房里的各位神仙丝毫不慌的颓倒是有点慌了,敲了一下多项式的板子感觉写的相当自闭,感觉AFO应该 ...

  9. [日常] HEOI 2019 退役记

    HEOI 2019 退役记 先开坑 坐等AFO 啥时候想起来就更一点(咕咕咕) Day 0 早上打了个LCT, 打完一遍过编译一遍AC...(看来不考这玩意了) 然后进行了一些精神文明建设活动奶了一口 ...

随机推荐

  1. Function Programming - 柯里化(curry)

    看到一篇非常不错的文章,这里分享给大家:http://www.jianshu.com/p/fa3568087881. 首先,柯里化的定义:你可以只透过部分的参数呼叫一个function,它会回传一个f ...

  2. 照虎画猫写自己的Spring——自定义注解

    Fairy已经实现的功能 读取XML格式配置文件,解析得到Bean 读取JSON格式配置文件,解析得到Bean 基于XML配置的依赖注入 所以,理所当然,今天该实现基于注解的依赖注入了. 基于XML配 ...

  3. 用lua+redis实现一个简单的计数器功能 (二)

    环境已经搭建完毕 传送门 计数方案 就目前来看nginx是最快的服务 我在设计方案时选择信任redis作为存储库,不做穿透处理,由于目前redis集群方案还不成熟,只在这里做了主备方案.想做集群方案的 ...

  4. Swarm 如何存储数据?- 每天5分钟玩转 Docker 容器技术(103)

    service 的容器副本会 scale up/down,会 failover,会在不同的主机上创建和销毁,这就引出一个问题,如果 service 有要管理的数据,那么这些数据应该如何存放呢? 选项一 ...

  5. CentOS7操作系统参数优化

    生产环境配置需要标准化,将常用操作写成脚本用于操作系统的初始化. #!/bin/bash #Date:2017 #This Script is for centos7.3 init #01.配置yum ...

  6. UWP 图片缩放

    给Image外面包裹一个ScrollViewer,你会回来感激我的. 哦,对了,PC上需要按住Ctrl键,滑动鼠标滑轮即可:手机上双指就可以缩放. <ScrollViewer ZoomMode= ...

  7. nginx利用反向代理调试后台接口

    1.location 支持配置项目的绝对路径 2.假设我们的后台API地址是以API开头,location ^~ /api/ 代表nginx将会拦截请求地址中包含"/api/"字样 ...

  8. QGIS2.18.0的精简编译

    1.下代码,下依赖库 - expat - fcgi - gdal - gsl-devel - iconv - openssl-devel - openssl-libs - pyqt4 - qca-de ...

  9. GDAL编译

    使用cmd命令行编译 1.首先在“开始菜单\所有程序\Microsoft Visual Studio 2008\Visual Studio Tools\ Visual Studio 2008命令提示” ...

  10. 简单的调用OpenCV库的Android NDK开发 工具Android Studio

    前言 本博客写于2017/08/11, 博主非专业搞安卓开发, 只是工作的需要倒腾了下Android NDK相关的开发, 博文中有什么不正确.不严格的地方欢迎指正哈    本文后续也许还会有删改, 就 ...