hadoop学习;block数据块;mapreduce实现样例;UnsupportedClassVersionError异常;关联项目源代码
对于开源的东东,尤其是刚出来不久,我认为最好的学习方式就是能够看源代码和doc,測试它的样例
为了方便查看源代码,关联导入源代码的项目
先前的项目导入源代码是关联了源代码文件
block数据块,在配置文件hdfs-default.xml中能够查看到,记住要改动不是在这里
block文件存储块是最主要的单位
查看block存放位置,配置文件里查看
假设文件大于64M会占两个块,meta文件是校验文件,第二个文件大于64M,删除文件后,则相应block不在
datanode存放文件,一个文件能够存放在不同机器上datanode
mapreduce本身有默认的类,当什么都不写的时候,原样输出
package com.kane.mr.minidefault;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class TestDefault {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
//GenericOptionsParser辅助工具类
//String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
String[] otherArgs = {"hdfs://centos:9000/kane/mini.txt","hdfs://centos:9000/kane/output"};
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(TestDefault.class);
//中间的内容省略就採用默认的类操作,应该是原样输出
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));//输入參数,相应hadoop jar 相应类执行时在后面加的第一个參数
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));//输出參数
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
然后到处该类为jar包,放到hadoop文件下,执行
接下来自己创建须要mr执行的源文件,并导入hdfs中
当我们执行hadoop命令执行时 可能出异常,由于你编写代码的jdk可能和hadoop用到的JVM不匹配
解决的办法事实上非常easy,仅仅要更改这个选项即可了。详细过程例如以下:
----------------------------------------------------------
1、右键点击project文件,选择属性(properties),
2、在属性窗体中选择 Build-->Java,在右边的选项中有四个下拉框,就能够看到编译选项了,
3、当中Compiler和Debug Option能够不用管,仅仅在Languege features和Target VM中选择对应的JDK版本号就能够了,然后确定,一切OK。
附件中是配置的图片。
-----------------------------------------------------------
假设在Target VM中选择了All Java SDKs,那么你的class文件在使用JDK1.1的VM上都能够执行(Jbuilder2006帮助中是这么说的,预计没几个人的机子上还在用JDK1.1吧 :-)
默认的mr程序原样输出
測试wordcount
package com.kane.mr;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class MapperClass extends Mapper<Object,Text,Text,IntWritable>{
public Text keyText=new Text("key");
public IntWritable intValue=new IntWritable(1);
@Override
protected void map(Object key, Text value,
Context context)
throws IOException, InterruptedException {
//获取输入的值
String str=value.toString();
//用什么分隔键值,默认空格或\t 或\n
StringTokenizer sTokenizer=new StringTokenizer(str);
//循环输出,假如是My name is kane 则分四次输出四个单词
while (sTokenizer.hasMoreElements()) {
Object object = (Object) sTokenizer.nextElement();
//这里每一个单词能够看做一个key
keyText.set(str);
context.write(keyText, intValue);//匹配一个就加value比如(“My”,1)
}
}
}
package com.kane.mr;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
//map传来的键值就是text 和 intwritable
public class ReducerClass extends Reducer<Text,IntWritable, Text,IntWritable>{
public IntWritable intValue= new IntWritable(0);
@Override
protected void reduce(Text key, Iterable<IntWritable> values,//假如name出现两次,这里得到的values是 name [1,1]
Context context)
throws IOException, InterruptedException {
int sum=0;
while (values.iterator().hasNext()) {
sum+=values.iterator().next().get();
}
//这里值用intwritable输出是由于非常多情况下一个mapreduce的输出是下一个mapreduce的输入
intValue.set(sum);
context.write(key, intValue);
}
}
package com.kane.mr;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCounter {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCounter.class);
job.setMapperClass(MapperClass.class);
//job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(ReducerClass.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));//输入參数,相应hadoop jar 相应类执行时在后面加的第一个參数
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));//输出參数
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
hadoop学习;block数据块;mapreduce实现样例;UnsupportedClassVersionError异常;关联项目源代码的更多相关文章
- hadoop得知;block数据块;mapreduce实现样例;UnsupportedClassVersionError变态;该项目的源代码相关联
对于开源的东西.特别是刚出来不久.我认为最好的学习方法是能够看到源代码,doc,样品测试 为了方便查看源代码,导入与项目相关的源代码 watermark/2/text/aHR0cDovL2Jsb2cu ...
- Hadoop hadoop 之hdfs数据块修复方法
hadoop 之hdfs数据块修复方法: .手动修复 hdfs fsck / #检查集群的健康状态 hdfs debug recoverLease -path 文件位置 -retries 重试次数 # ...
- Hadoop学习(4)-- MapReduce
MapReduce是一种用于大规模数据集的并行计算编程模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题.其主要思想Map(映射)和Reduce(规约)都是从函数是编程语言中借鉴而来的 ...
- hadoop学习第三天-MapReduce介绍&&WordCount示例&&倒排索引示例
一.MapReduce介绍 (最好以下面的两个示例来理解原理) 1. MapReduce的基本思想 Map-reduce的思想就是“分而治之” Map Mapper负责“分”,即把复杂的任务分解为若干 ...
- Hadoop学习基础之三:MapReduce
现在是讨论这个问题的不错的时机,因为最近媒体上到处充斥着新的革命所谓“云计算”的信息.这种模式需要利用大量的(低端)处理器并行工作来解决计算问题.实际上,这建议利用大量的低端处理器来构建数据中心,而不 ...
- Hadoop学习之第一个MapReduce程序
期望 通过这个mapreduce程序了解mapreduce程序执行的流程,着重从程序解执行的打印信息中提炼出有用信息. 执行前 程序代码 程序代码基本上是<hadoop权威指南>上原封不动 ...
- Hdfs block数据块大小的设置规则
1.概述 hadoop集群中文件的存储都是以块的形式存储在hdfs中. 2.默认值 从2.7.3版本开始block size的默认大小为128M,之前版本的默认值是64M. 3.如何修改block块的 ...
- Hadoop学习笔记—4.初识MapReduce
一.神马是高大上的MapReduce MapReduce是Google的一项重要技术,它首先是一个编程模型,用以进行大数据量的计算.对于大数据量的计算,通常采用的处理手法就是并行计算.但对许多开发者来 ...
- Hadoop学习笔记(2) 关于MapReduce
1. 查找历年最高的温度. MapReduce任务过程被分为两个处理阶段:map阶段和reduce阶段.每个阶段都以键/值对作为输入和输出,并由程序员选择它们的类型.程序员还需具体定义两个函数:map ...
随机推荐
- C#中配置文件的使用
1. 向项目添加app.config文件: 右击项目名称,选择“添加”→“添加新建项”,在出现的“添加新项”对话框中,选择“添加应用程序配置文件”:如果项目以前没有配置文件,则默认的文件名称为“app ...
- 食物卡喉别拍背部!救了100多万人性命的“海姆立克急救法"
先讲三个事例: 一.近日,浙江金华一个17月大的小贝边玩边吃花生,被噎住.10多分钟后,奶奶发现小贝大口喘气,以为他玩累了就抱他回家,等父母赶到送医已晚.小贝大脑受损严重-父母含泪同意放弃治疗,孩子走 ...
- flask开发遇到Internal Server Error的解决办法
flask开发过程中遇到了Internal Server Error错误,可以在代码加上debug app.debug=True 这样就能看到错误信息了
- CodeForces 135 B. Rectangle and Square(判断正方形和 矩形)
题目:http://codeforces.com/problemset/problem/135/B 题意:给8个点 判断能否用 4个点构成正方形,另外4个点构成 矩形. 输出 第一行是正方形 ,第二行 ...
- Innodb引擎 long semaphore waits
上一篇介绍了因为子表过多,导致innodb crash的情况,但crash的原因是long semaphore waits.long semaphore waits又为何物? 背景:Innodb使用了 ...
- 【转】java提高篇(十)-----详解匿名内部类
原文网址:http://www.cnblogs.com/chenssy/p/3390871.html 在java提高篇-----详解内部类中对匿名内部类做了一个简单的介绍,但是内部类还存在很多其他细节 ...
- 学习面试题Day05
1.如何理解数组在Java中作为一个类? Java的数组本质上是一个类,该类还保存了数据类型的信息.该类通过成员变量的形式来保存数据,并且通过[]符号,使用下标来访问这些数据.在处理基本类型数据时,数 ...
- Ext入门学习系列(二)弹出窗体
第二章 弹出窗体 上节学习了Ext的环境搭建和最基本的一个操作——弹出对话框,作为一个引子,本节讲述如何弹出一个新窗体,从实例讲解Ext的基本运行原理. 一.Ext的窗体长什么样? 先来看看几个效果, ...
- HDU 4565 So Easy!
So Easy! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- 理解Android的手势识别
对于触摸屏,其原生的消息无非按下.抬起.移动这几种,我们只需要简单重载onTouch或者设置触摸侦听器setOnTouchListener即可进行处理.不过,为了提高我们的APP的用户体验,有时候我们 ...