[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.1
Let $A=A_1\oplus A_2$. Show that
(1). $W(A)$ is the convex hull of $W(A_1)$ and $W(A_2)$; i.e., the smallest convex set containing $W(A_1)\cup W(A_2)$.
(2). $$\beex \bea \sen{A}&=\max\sed{\sen{A_1},\sen{A_2}},\\ \spr(A)&=\max\sed{\spr(A_1),\spr(A_2)},\\ w(A)&=\max\sed{w(A_1),w(A_2)}. \eea \eeex$$
Solution.
(1). We have $$\beex \bea W(A)&=\sed{x^*Ax;\sen{x}=1}\\ &=\sed{y^*A_1y+z^*A_2z;\sen{y}^2+\sen{z}^2=1}\\ &\supset W(A_1)\cup W(A_2), \eea \eeex$$ and $$\bex W(A)=\sed{\sen{y}^2 \sex{\frac{y}{\sen{y}}}^*A_1\frac{y}{\sen{y}} +\sen{z}^2 \sex{\frac{z}{\sen{z}}}^*A_2\frac{z}{\sen{z}}; \sen{y}^2+\sen{z}^2=1} \eex$$ is contained in any convex set containing $W(A_1)\cup W(A_2)$.
(2). $$\beex \bea \sen{Ax}^2&=\sen{\sex{A_1y\atop A_2z}}^2\quad\sex{x=\sex{y\atop z}}\\ &=\sen{A_1y}^2+\sen{A_2z}^2\\ &\leq \sen{A_1}^2\sen{y}^2+\sen{A_2}^2\sen{z}^2\\ &\leq \max\sed{\sen{A_1},\sen{A_2}}^2 \sex{\sen{y}^2+\sen{z}^2}\\ &=\max\sed{\sen{A_1},\sen{A_2}}^2 \sen{x}^2. \eea \eeex$$ $$\beex \bea &\quad Ax=\lm x\quad\sex{x\neq 0}\\ &\ra A_1y=\lm y,\quad A_2z=\lm z\quad\sex{x=\sex{y\atop z}}\\ &\ra |\lm|\leq\sedd{\ba{ll} \spr(A_1),&y\neq 0\\ \spr(A_2),&z\neq 0 \ea}\\ &\ra |\lm|\leq \max\sed{\spr(A_1),\spr(A_2)};\\ &\quad A_1y=\lm y\quad\sex{y\neq 0}\\ &\ra A\sex{y\atop 0}=\lm \sex{y\atop 0}\\ &\ra |\lm|\leq \spr(A);\\ &\quad A_2z=\lm z\quad\sex{z\neq 0}\\ &\ra |\lm|\leq \spr(A). \eea \eeex$$ $$\beex \bea w(A)&=\sup_{\sen{x}=1}\sev{\sef{x,Ax}}\\ &=\sup_{\sen{y}^2+\sen{z}^2=1} \sev{\sef{y,A_1y}+\sev{z,A_2z}}\\ &\leq \sup_{\sen{y}^2+\sen{z}^2=1} \sez{ \sen{y}^2w(A_1)+\sen{z}^2w(A_2) }\\ &\leq \max\sed{w(A_1),w(A_2)};\\ w(A_1)&=\sup_{\sen{y}=1}\sen{\sef{y,A_1y}}\\ &=\sup_{\sen{\sex{y\atop 0}}=1} \sev{\sef{\sex{y\atop 0},A\sex{y\atop 0}}}\\ &\leq w(A),\\ w(A_2)&\leq w(A). \eea \eeex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.1的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- 微软职位内部推荐-Sr DEV Lead, Bing Search Relevance
微软近期Open的职位: Contact Person: Winnie Wei (wiwe@microsoft.com )Sr DEV Lead, Bing Search RelevanceLocat ...
- struts2与velocity的整合有两种方式
1.以struts2为主.struts2内置了对velocity的支持,只要在<result name="success"?type="velocity" ...
- js模拟触发事件
html标签元素封装着实用的[事件],但在很多时候,需要[模拟触发事件],比如 [按钮单机事件] 可以实实在在点击按钮触发该事件,但体验而言,很多时候需要js逻辑处理让实现 触发事件的效果这时就用 ...
- 苹果Mac操作系统下怎么显示隐藏文件
对于新手而已民,苹果的MAC操作系统刚用时用得很不习惯,比如想要显示被隐藏的文件时,不像windows有个“文件夹选项”对话框可以来设置,百度出来的结果都是用命令来操作,但我建议不要用命令去操作, ...
- 关于sqlmap无法打开的问题解决办法
sqlmap无法打开这个问题困扰了我几天,今天才从一个论坛的视频教程里看到这个办法,有可能对其他有些情况依旧没用,但是希望和我一样状况的人看到这篇文章,能收到一些启发 我之前百度了很久,google了 ...
- Maven 执行Javadoc时控制台输出乱码问题
1.0 Maven 执行Javadoc时控制台输出乱码问题 问题描述 最近项目中使用maven-javadoc-plugin生成javadoc时,myEclipse控制台乱码. 插件配置 问题分析 ...
- [转载]async & await 的前世今生
async 和 await 出现在C# 5.0之后,给并行编程带来了不少的方便,特别是当在MVC中的Action也变成async之后,有点开始什么都是async的味道了.但是这也给我们编程埋下了一些隐 ...
- [转载]html5直接在网页上播放视频音频兼容所有浏览器
文章给大家分享一个html5直接在网页上播放视频兼容所有浏览器,有需要的同学可参考. HTML5可以用video标签来播放视频 当前,video 元素支持三种视频格式: 格式 IE Firefox O ...
- 多线程(一)NSThread
iOS中多线程的实现方案: 技术 语言 线程生命周期 使用频率 pthread C 程序员自行管理 几乎不用 NSthread OC 程序员自行管理 偶尔使用 GCD C 自动管理 经常使用 NSOp ...
- PowerDesigner15(16)在生成SQL时报错Generation aborted due to errors detected during the verification of the mod
1.用PowerDesigner15建模,在Database—>Generate Database (或者用Ctrl+G快捷键)来生产sql语句,却提示“Generation aborted d ...