Let $A=A_1\oplus A_2$. Show that

(1). $W(A)$ is the convex hull of $W(A_1)$ and $W(A_2)$; i.e., the smallest convex set containing $W(A_1)\cup W(A_2)$.

(2). $$\beex \bea \sen{A}&=\max\sed{\sen{A_1},\sen{A_2}},\\ \spr(A)&=\max\sed{\spr(A_1),\spr(A_2)},\\ w(A)&=\max\sed{w(A_1),w(A_2)}. \eea \eeex$$

Solution.

(1). We have $$\beex \bea W(A)&=\sed{x^*Ax;\sen{x}=1}\\ &=\sed{y^*A_1y+z^*A_2z;\sen{y}^2+\sen{z}^2=1}\\ &\supset W(A_1)\cup W(A_2), \eea \eeex$$ and $$\bex W(A)=\sed{\sen{y}^2 \sex{\frac{y}{\sen{y}}}^*A_1\frac{y}{\sen{y}} +\sen{z}^2 \sex{\frac{z}{\sen{z}}}^*A_2\frac{z}{\sen{z}}; \sen{y}^2+\sen{z}^2=1} \eex$$ is contained in any convex set containing $W(A_1)\cup W(A_2)$.

(2). $$\beex \bea \sen{Ax}^2&=\sen{\sex{A_1y\atop A_2z}}^2\quad\sex{x=\sex{y\atop z}}\\ &=\sen{A_1y}^2+\sen{A_2z}^2\\ &\leq \sen{A_1}^2\sen{y}^2+\sen{A_2}^2\sen{z}^2\\ &\leq \max\sed{\sen{A_1},\sen{A_2}}^2 \sex{\sen{y}^2+\sen{z}^2}\\ &=\max\sed{\sen{A_1},\sen{A_2}}^2 \sen{x}^2. \eea \eeex$$ $$\beex \bea &\quad Ax=\lm x\quad\sex{x\neq 0}\\ &\ra A_1y=\lm y,\quad A_2z=\lm z\quad\sex{x=\sex{y\atop z}}\\ &\ra |\lm|\leq\sedd{\ba{ll} \spr(A_1),&y\neq 0\\ \spr(A_2),&z\neq 0 \ea}\\ &\ra |\lm|\leq \max\sed{\spr(A_1),\spr(A_2)};\\ &\quad A_1y=\lm y\quad\sex{y\neq 0}\\ &\ra A\sex{y\atop 0}=\lm \sex{y\atop 0}\\ &\ra |\lm|\leq \spr(A);\\ &\quad A_2z=\lm z\quad\sex{z\neq 0}\\ &\ra |\lm|\leq \spr(A). \eea \eeex$$ $$\beex \bea w(A)&=\sup_{\sen{x}=1}\sev{\sef{x,Ax}}\\ &=\sup_{\sen{y}^2+\sen{z}^2=1} \sev{\sef{y,A_1y}+\sev{z,A_2z}}\\ &\leq \sup_{\sen{y}^2+\sen{z}^2=1} \sez{ \sen{y}^2w(A_1)+\sen{z}^2w(A_2) }\\ &\leq \max\sed{w(A_1),w(A_2)};\\ w(A_1)&=\sup_{\sen{y}=1}\sen{\sef{y,A_1y}}\\ &=\sup_{\sen{\sex{y\atop 0}}=1} \sev{\sef{\sex{y\atop 0},A\sex{y\atop 0}}}\\ &\leq w(A),\\ w(A_2)&\leq w(A). \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.1的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 【CSLA】Component-based,Scalable,LogicalArchitecture

    我能说我没看懂吗 ? http://www.cnblogs.com/lonely7345/archive/2010/02/06/1665171.html

  2. CLR.via.C#第三版 读书笔记

    第一章 CLR的执行模型 1.1将源代码编译成托管代码 决定将.NET Framework作为自己的开发平台之后,第一步是决定要生成什么类型的应用程序或组件.假定你已经完成了这些次要的细节:一切都已经 ...

  3. 微软职位内部推荐-Sr DEV Lead, Bing Search Relevance

    微软近期Open的职位: Contact Person: Winnie Wei (wiwe@microsoft.com )Sr DEV Lead, Bing Search RelevanceLocat ...

  4. hibernate一对一双向外键关联

    一对一双向外键关联:双方都持有对方的外键关联关系. 主控方和一对一单向外键关联的情况是一样的,主要的差异表现为,被空方需要添加: @OneToOne(mappedBy="card" ...

  5. 基于局部敏感哈希的协同过滤算法之simHash算法

    搜集了快一个月的资料,虽然不完全懂,但还是先慢慢写着吧,说不定就有思路了呢. 开源的最大好处是会让作者对脏乱臭的代码有羞耻感. 当一个做推荐系统的部门开始重视[数据清理,数据标柱,效果评测,数据统计, ...

  6. Kafka server的的停止

    这算是CountDownLatch的一个典型使用场景. kafka.Kafka对象的main方法中与此有关的代码为 // attach shutdown handler to catch contro ...

  7. 【C++基础】内存操作 getMemory改错

    内存操作的考察点:①指针 ②变量生存期及作用范围 ③动态内存申请和释放 笔试题************************************************************* ...

  8. python的web压力测试工具-pylot安装使用

    http://blog.csdn.net/chenggong2dm/article/details/10106517 pylot是python编写的一款web压力测试工具.使用比较简单.而且测试结果相 ...

  9. jasper ireport create a report with parameters without sql query

    I'm new in jasper ireport , and I want to know if it is possible to create a report only with static ...

  10. Java在Windows的环境配置

    JDK环境变量配置的步骤如下: 1.我的电脑-->属性-->高级-->环境变量. 2.配置用户变量: 系统变量 a.新建 JAVA_HOME C:\Program Files\Jav ...