[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.1
Let $A=A_1\oplus A_2$. Show that
(1). $W(A)$ is the convex hull of $W(A_1)$ and $W(A_2)$; i.e., the smallest convex set containing $W(A_1)\cup W(A_2)$.
(2). $$\beex \bea \sen{A}&=\max\sed{\sen{A_1},\sen{A_2}},\\ \spr(A)&=\max\sed{\spr(A_1),\spr(A_2)},\\ w(A)&=\max\sed{w(A_1),w(A_2)}. \eea \eeex$$
Solution.
(1). We have $$\beex \bea W(A)&=\sed{x^*Ax;\sen{x}=1}\\ &=\sed{y^*A_1y+z^*A_2z;\sen{y}^2+\sen{z}^2=1}\\ &\supset W(A_1)\cup W(A_2), \eea \eeex$$ and $$\bex W(A)=\sed{\sen{y}^2 \sex{\frac{y}{\sen{y}}}^*A_1\frac{y}{\sen{y}} +\sen{z}^2 \sex{\frac{z}{\sen{z}}}^*A_2\frac{z}{\sen{z}}; \sen{y}^2+\sen{z}^2=1} \eex$$ is contained in any convex set containing $W(A_1)\cup W(A_2)$.
(2). $$\beex \bea \sen{Ax}^2&=\sen{\sex{A_1y\atop A_2z}}^2\quad\sex{x=\sex{y\atop z}}\\ &=\sen{A_1y}^2+\sen{A_2z}^2\\ &\leq \sen{A_1}^2\sen{y}^2+\sen{A_2}^2\sen{z}^2\\ &\leq \max\sed{\sen{A_1},\sen{A_2}}^2 \sex{\sen{y}^2+\sen{z}^2}\\ &=\max\sed{\sen{A_1},\sen{A_2}}^2 \sen{x}^2. \eea \eeex$$ $$\beex \bea &\quad Ax=\lm x\quad\sex{x\neq 0}\\ &\ra A_1y=\lm y,\quad A_2z=\lm z\quad\sex{x=\sex{y\atop z}}\\ &\ra |\lm|\leq\sedd{\ba{ll} \spr(A_1),&y\neq 0\\ \spr(A_2),&z\neq 0 \ea}\\ &\ra |\lm|\leq \max\sed{\spr(A_1),\spr(A_2)};\\ &\quad A_1y=\lm y\quad\sex{y\neq 0}\\ &\ra A\sex{y\atop 0}=\lm \sex{y\atop 0}\\ &\ra |\lm|\leq \spr(A);\\ &\quad A_2z=\lm z\quad\sex{z\neq 0}\\ &\ra |\lm|\leq \spr(A). \eea \eeex$$ $$\beex \bea w(A)&=\sup_{\sen{x}=1}\sev{\sef{x,Ax}}\\ &=\sup_{\sen{y}^2+\sen{z}^2=1} \sev{\sef{y,A_1y}+\sev{z,A_2z}}\\ &\leq \sup_{\sen{y}^2+\sen{z}^2=1} \sez{ \sen{y}^2w(A_1)+\sen{z}^2w(A_2) }\\ &\leq \max\sed{w(A_1),w(A_2)};\\ w(A_1)&=\sup_{\sen{y}=1}\sen{\sef{y,A_1y}}\\ &=\sup_{\sen{\sex{y\atop 0}}=1} \sev{\sef{\sex{y\atop 0},A\sex{y\atop 0}}}\\ &\leq w(A),\\ w(A_2)&\leq w(A). \eea \eeex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.1的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- python多进程中的队列数据共享问题
0x00 起 今天在写一个小东西的时候,需要控制并发量,但又不能直接调用python multiprocessing(问题会在文后提到).于是尝试用Queue来实现. 最一开始的思路是这样的: fro ...
- Runtime 实现 动态添加属性
利用动态加载为对象添加一个 block 点击属性; .h 文件 #import <UIKit/UIKit.h> @interface UIView (Tap) /** * 动态添加手势 * ...
- 苹果Mac操作系统下怎么显示隐藏文件
对于新手而已民,苹果的MAC操作系统刚用时用得很不习惯,比如想要显示被隐藏的文件时,不像windows有个“文件夹选项”对话框可以来设置,百度出来的结果都是用命令来操作,但我建议不要用命令去操作, ...
- Samba出现“您可能没有权限使用网络资源”解决方法
我最近在Centos6.3上搭建Samba系统,按照配置都已经配置好了,当就是没法在win7下访问,老是弹出以下弹出框: 后来我在网上找资料发现有SELinux这么个东西,然后我就按照配置该了一下就成 ...
- centos7安装chrome及加载poatman开发插件
为什么要安装chrome?因为centos7的默认浏览器firefox的实在是不习惯,上面占了太多,本来显示器就不大... 好了,首先下载chome的rpm安装包(如果需要的可以留言,我有备份) 然后 ...
- 数据生成器Bogus的使用以及基于声明的扩展
引言 最近在整理代码,发现以前写的一个数据填充器写了一半没实现,而偏偏这段时间就要用到类似的功能,所以正好实现下. 目标 这个工具的目标是能够在项目初期快速搭建一个"数据提供器", ...
- 你不需要jQuery(四)
jQuery是个好东西.它诞生于IE6在互联网称霸的那个时代.jQuery的存在让我们的代码能很好的兼容各种平台. 然而,到如今,浏览器技术已经取得了巨大的进步.我们可以自由的使用所有最新众多ES5/ ...
- [转载]jQuery 1.9 移除了 $.browser 的替代方法获取浏览器类型
jQuery 从 1.9 版开始,移除了 $.browser 和 $.browser.version , 取而代之的是 $.support . 在更新的 2.0 版本中,将不再支持 IE 6/7/8. ...
- 【Unity3D】【NGUI】本地生成API文档
原地址:http://blog.csdn.net/u012091672/article/details/17438135 NGUI讨论群:333417608 1.安装Doxygen(http://ww ...
- Executing a script from Nagios event handler fails to run
I have Nagios running on a webserver. For this one Nagios service check in particular, if it fails, ...