Let $A=A_1\oplus A_2$. Show that

(1). $W(A)$ is the convex hull of $W(A_1)$ and $W(A_2)$; i.e., the smallest convex set containing $W(A_1)\cup W(A_2)$.

(2). $$\beex \bea \sen{A}&=\max\sed{\sen{A_1},\sen{A_2}},\\ \spr(A)&=\max\sed{\spr(A_1),\spr(A_2)},\\ w(A)&=\max\sed{w(A_1),w(A_2)}. \eea \eeex$$

Solution.

(1). We have $$\beex \bea W(A)&=\sed{x^*Ax;\sen{x}=1}\\ &=\sed{y^*A_1y+z^*A_2z;\sen{y}^2+\sen{z}^2=1}\\ &\supset W(A_1)\cup W(A_2), \eea \eeex$$ and $$\bex W(A)=\sed{\sen{y}^2 \sex{\frac{y}{\sen{y}}}^*A_1\frac{y}{\sen{y}} +\sen{z}^2 \sex{\frac{z}{\sen{z}}}^*A_2\frac{z}{\sen{z}}; \sen{y}^2+\sen{z}^2=1} \eex$$ is contained in any convex set containing $W(A_1)\cup W(A_2)$.

(2). $$\beex \bea \sen{Ax}^2&=\sen{\sex{A_1y\atop A_2z}}^2\quad\sex{x=\sex{y\atop z}}\\ &=\sen{A_1y}^2+\sen{A_2z}^2\\ &\leq \sen{A_1}^2\sen{y}^2+\sen{A_2}^2\sen{z}^2\\ &\leq \max\sed{\sen{A_1},\sen{A_2}}^2 \sex{\sen{y}^2+\sen{z}^2}\\ &=\max\sed{\sen{A_1},\sen{A_2}}^2 \sen{x}^2. \eea \eeex$$ $$\beex \bea &\quad Ax=\lm x\quad\sex{x\neq 0}\\ &\ra A_1y=\lm y,\quad A_2z=\lm z\quad\sex{x=\sex{y\atop z}}\\ &\ra |\lm|\leq\sedd{\ba{ll} \spr(A_1),&y\neq 0\\ \spr(A_2),&z\neq 0 \ea}\\ &\ra |\lm|\leq \max\sed{\spr(A_1),\spr(A_2)};\\ &\quad A_1y=\lm y\quad\sex{y\neq 0}\\ &\ra A\sex{y\atop 0}=\lm \sex{y\atop 0}\\ &\ra |\lm|\leq \spr(A);\\ &\quad A_2z=\lm z\quad\sex{z\neq 0}\\ &\ra |\lm|\leq \spr(A). \eea \eeex$$ $$\beex \bea w(A)&=\sup_{\sen{x}=1}\sev{\sef{x,Ax}}\\ &=\sup_{\sen{y}^2+\sen{z}^2=1} \sev{\sef{y,A_1y}+\sev{z,A_2z}}\\ &\leq \sup_{\sen{y}^2+\sen{z}^2=1} \sez{ \sen{y}^2w(A_1)+\sen{z}^2w(A_2) }\\ &\leq \max\sed{w(A_1),w(A_2)};\\ w(A_1)&=\sup_{\sen{y}=1}\sen{\sef{y,A_1y}}\\ &=\sup_{\sen{\sex{y\atop 0}}=1} \sev{\sef{\sex{y\atop 0},A\sex{y\atop 0}}}\\ &\leq w(A),\\ w(A_2)&\leq w(A). \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.1的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. poj 1236 Network of Schools(又是强连通分量+缩点)

    http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  2. First Groovy

    class Sample { def names = ["anna", "annie", "tommy", "bobby" ...

  3. vs2010 使用SignalR 提高B2C商城用户体验(二)

    vs2010 使用SignalR 提高B2C商城用户体验(二) 上一节,已经实现了,当前域内的通信,这一节中,介绍一下跨域的即时通信,既然要做,我们肯定要把这个推送及聊天服务器做为一个单独的服务器,以 ...

  4. NSFileHandle 和 NSFileManager的一些用法

    文件操作 NSFileManager 常见的NSFileManager文件的方法: -(BOOL)contentsAtPath:path 从文件中读取数据 -(BOOL)createFileAtPat ...

  5. Microsoft.Web.Administration in IIS

    http://blogs.msdn.com/b/carlosag/archive/2006/04/17/microsoftwebadministration.aspx 最好使用在IIS8中,因为为每一 ...

  6. ExtJS4.2学习(三)Grid表格(转)

    鸣谢:http://www.shuyangyang.com.cn/jishuliangongfang/qianduanjishu/2013-11-07/172.html --------------- ...

  7. [转载]在網頁上加入HTML5 的Video Tag,直接播放MP4、OGG…等

    在之前有一篇文章提到HTML5(為何iPhone,iPod,iPad不支援Flash,HTML5將更普及於網路世界!!)的重要性,而Html 5的主要革新是在他的語意標籤,像是<video> ...

  8. spoj 2

    筛选法找素数  数据范围很大  1 <= m <= n <= 1000000000  一开始不知道怎么做  查了一下 先筛选出40000内的素数 再依靠这些素数筛选题目要求的素数 # ...

  9. [BEC][hujiang] Lesson03 Unit1:Working life ---Grammar & Listening & Vocabulary

    3 Working life p8 Grammar Gerund and infinitive(动名词和不定式) 一般而言:        1 动词后面接动名词还是不定式没有特定规则,主要取决于语言习 ...

  10. python常用web框架性能测试(django,flask,bottle,tornado)

    测了一下django.flask.bottle.tornado 框架本身最简单的性能.对django的性能完全无语了. django.flask.bottle 均使用gunicorn+gevent启动 ...