题目

给出 \(n\) 个数,问有多少个子集的按位与为0


分析

考虑容斥,设 \(f[i]\) 表示有多少个数按位与为 \(x\),满足 \(x\&i=i\)

那么答案就是 \(\sum_{i=0}^{mx}(2^{f[i]}-1)(-1)^{cnt_i}\),这个 \(f\) 直接子集卷起来就可以了


代码

#include <cstdio>
#include <cctype>
using namespace std;
const int N=1000011,mod=1000000007;
int n,two[N],xo[N],c[N],ans,mx;
int iut(){
int ans=0; char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
int mo(int x,int y){return x+y>=mod?x+y-mod:x+y;}
int main(){
n=iut(),two[0]=1;
for (int i=1;i<=n;++i) two[i]=mo(two[i-1],two[i-1]);
for (int i=1,x;i<=n;++i) x=iut(),++c[x],mx=mx>x?mx:x;
for (int i=1;i<=mx;++i) xo[i]=xo[i&(i-1)]+1;
for (int j=0;j<20;++j)
for (int i=1;i<=mx;++i)
if ((i>>j)&1) c[i^(1<<j)]+=c[i];
for (int i=0;i<=mx;++i)
if (xo[i]&1) ans=mo(ans,mod-two[c[i]]+1);
else ans=mo(ans,two[c[i]]-1);
return !printf("%d",ans);
}

#容斥#51nod 1407 与与与与的更多相关文章

  1. 51Nod 1486 大大走格子 —— 容斥

    题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1486 对于每个点,求出从起点到它,不经过其他障碍点的方案数: 求一 ...

  2. 51nod 1518 稳定多米诺覆盖(容斥+二项式反演+状压dp)

    [传送门[(http://www.51nod.com/Challenge/Problem.html#!#problemId=1518) 解题思路 直接算不好算,考虑容斥,但并不能把行和列一起加进去容斥 ...

  3. 51nod部分容斥题解

    51nod1434 区间LCM 跟容斥没有关系.首先可以确定的一个结论是:对于任意正整数,有1*2*...*n | (k+1)*(k+2)*...*(k+n).因为这就是$C_{n+k}^{k}$. ...

  4. 51Nod 1439:互质对(用莫比乌斯来容斥)

    有n个数字,a11,a22,…,ann.有一个集合,刚开始集合为空.然后有一种操作每次向集合中加入一个数字或者删除一个数字.每次操作给出一个下标x(1 ≤ x ≤ n),如果axx已经在集合中,那么就 ...

  5. 2 3 5 7的倍数 (51Nod - 1284)[容斥定理]

    20180604 给出一个数N,求1至N中,有多少个数不是2 3 5 7的倍数. 例如N = 10,只有1不是2 3 5 7的倍数. Input 输入1个数N(1 <= N <= 10^1 ...

  6. 51nod 1251 Fox序列的数量 (容斥)

    枚举最多数字的出现次数$k$, 考虑其他数字的分配情况. 对至少$x$种数出现$\ge k$次的方案容斥, 有 $\sum (-1)^x\binom{m-1}{x}\binom{n-(x+1)k+m- ...

  7. 51nod 1486 大大走格子(容斥+dp+组合数)

    传送门 解题思路 暴力容斥复杂度太高,无法接受,考虑用\(dp\).设\(f(i)\)表示从左上角开始不经过前面的阻断点,只经过\(i\)的阻断点.那么可以考虑容斥,用经过\(i\)的总方案数减去前面 ...

  8. 51nod 1355 - 斐波那契的最小公倍数(Min-Max 容斥+莫比乌斯反演)

    vjudge 题面传送门 首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算--\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博 ...

  9. 【51nod1355】斐波那契的最小公倍数(min-max容斥)

    [51nod1355]斐波那契的最小公倍数(min-max容斥) 题面 51nod 题解 显然直接算还是没法算的,所以继续考虑\(min-max\)容斥计算. \[lcm(S)=\prod_{T\su ...

  10. 51nod1667-概率好题【容斥,组合数学】

    正题 题目链接:http://www.51nod.com/Challenge/Problem.html#problemId=1667 题目大意 两个人. 第一个人有\(k_1\)个集合,第\(i\)个 ...

随机推荐

  1. 项目实战:Qt+Android模拟操作器(模拟操作app,打开,点击,输入,获取验证码等等)

    若该文为原创文章,转载请注明原文出处本文章博客地址:https://blog.csdn.net/qq21497936/article/details/109313803各位读者,知识无穷而人力有穷,要 ...

  2. 亲测可行,Android Studio 查看源码出现 Source for ‘Android API xxx Platform’ not found 的解决方法

    亲测可行,Android Studio 查看源码出现 Source for 'Android API xxx Platform' not found 的解决方法 如标题中的问题,产生的原因就是 SDK ...

  3. 【LeetCode二叉树#15】二叉搜索树的最小绝对差(巩固迭代中序遍历#2)

    二叉搜索树的最小绝对差(迭代法中序遍历巩固) 力扣题目链接(opens new window) 给你一棵所有节点为非负值的二叉搜索树,请你计算树中任意两节点的差的绝对值的最小值. 示例: 提示:树中至 ...

  4. 【Azure Redis 缓存】如何使得Azure Redis可以仅从内网访问? Config 及 Timeout参数配置

    问题描述 问题一:Redis服务,如何可以做到仅允许特定的子网内的服务器进行访问? 问题二:Redis服务,timeout和keepalive的设置是怎样的?是否可以配置成timeout 0? 问题三 ...

  5. [Linux] 快速修改hosts访问github

    sudo sed -i '/github/d' /etc/hosts sudo bash -c "curl https://gitlab.com/ineo6/hosts/-/raw/mast ...

  6. vue3切换theme功能

    切换主题,老生常谈.反正我是第一次弄,还挺巧妙 我的实现方式是通过:root的修改,来一键换色 :root { // 主题色 --ry-primary-color: #ff9c00; // layou ...

  7. 我的Java面试资料推荐

    看法 每年去大厂试试水,借此来评估自己的能力.价值和不足,或许还能拿到一个好offer,是个合格程序员的职业表现 大厂面试,基本都是:先过算法,检验面试人的智商和逻辑能力:之后才考察语言.设计.中间件 ...

  8. ansible 自动化运维(2)

    回到顶部 Ansible playbook 简介 playbook 是 ansible 用于配置,部署,和管理被控节点的剧本. 通过 playbook 的详细描述,执行其中的一系列 tasks ,可以 ...

  9. java后端数据接收

    restful风格 @RequestMapping("/getTeacherPage/{current}/{limit}") public List<WorkOrder> ...

  10. 重新认识 tag 快照 git (项目临时添加需求,之前有分支合并,导致从节点拉分支不行了,因为没有tag快照)

    之前的tag认知 之前一直以为tag就是在git的提交commit上打一个标,然后可以拉出分支.之前没太重视. 因为我觉得 可以直接从某个commit直接拉出分支,这打不打tag无所谓 翻车现场 今天 ...