题目描述

Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are currently a single string with length M (1 ≤ M ≤ 2,000) characters drawn from an alphabet of N (1 ≤ N ≤ 26) different symbols (namely, the lower-case roman alphabet).

Cows, being the mischievous creatures they are, sometimes try to spoof the system by walking backwards. While a cow whose ID is "abcba" would read the same no matter which direction the she walks, a cow with the ID "abcb" can potentially register as two different IDs ("abcb" and "bcba").

FJ would like to change the cows's ID tags so they read the same no matter which direction the cow walks by. For example, "abcb" can be changed by adding "a" at the end to form "abcba" so that the ID is palindromic (reads the same forwards and backwards). Some other ways to change the ID to be palindromic are include adding the three letters "bcb" to the begining to yield the ID "bcbabcb" or removing the letter "a" to yield the ID "bcb". One can add or remove characters at any location in the string yielding a string longer or shorter than the original string.

Unfortunately as the ID tags are electronic, each character insertion or deletion has a cost (0 ≤ cost ≤ 10,000) which varies depending on exactly which character value to be added or deleted. Given the content of a cow's ID tag and the cost of inserting or deleting each of the alphabet's characters, find the minimum cost to change the ID tag so it satisfies FJ's requirements. An empty ID tag is considered to satisfy the requirements of reading the same forward and backward. Only letters with associated costs can be added to a string.

输入格式

Line 1: Two space-separated integers: N and M

Line 2: This line contains exactly M characters which constitute the initial ID string

Lines 3..N+2: Each line contains three space-separated entities: a character of the input alphabet and two integers which are respectively the cost of adding and deleting that character.

输出格式

Line 1: A single line with a single integer that is the minimum cost to change the given name tag.

样例 #1

样例输入 #1

3 4
abcb
a 1000 1100
b 350 700
c 200 800

样例输出 #1

900

提示

If we insert an "a" on the end to get "abcba", the cost would be 1000. If we delete the "a" on the beginning to get "bcb", the cost would be 1100. If we insert "bcb" at the begining of the string, the cost would be 350 + 200 + 350 = 900, which is the minimum.

考虑区间dp。

首先初始情况就是只有一个字符或者没有字符,本身就是回文串,价值为0.

一个串如果最左边的字符\(c_l\)和最右边的字符\(c_r\)相等,那么不影响回文,递归到(l+1,r-1)

那么其他的情况下有两种选择,要不就删掉左边的字符,要不就在右边加一个和左边一样的字符。同样,要不删掉右边的字符,要不就在左边加一个和右边一样的字符。然后又有一位不许计算,递推取最小值即可。

#include<bits/stdc++.h>
#define N 2005
using namespace std;
int n,m,ad[35],de[35],dp[N][N];
char c,s[N];
int main()
{
memset(dp,0x7f,sizeof(dp));
scanf("%d%d%s",&n,&m,s+1);
for(int i=1;i<=m;i++)
dp[i][i]=dp[i][i-1]=0;
for(int i=1;i<=n;i++)
{
scanf(" %c",&c);
scanf("%d%d",&ad[c-'a'],&de[c-'a']);
}
for(int i=2;i<=m;i++)
{
for(int j=1;j+i-1<=m;j++)
{
dp[j][j+i-1]=min(dp[j+1][j+i-1]+min(de[s[j]-'a'],ad[s[j]-'a']),dp[j][j+i-2]+min(de[s[j+i-1]-'a'],ad[s[j+i-1]-'a']));
if(s[j]==s[j+i-1])
dp[j][j+i-1]=min(dp[j][j+i-1],dp[j+1][j+i-2]);
}
}
printf("%d",dp[1][m]);
return 0;
}

[USACO2007OPEN G]Cheapest Palindrome的更多相关文章

  1. POJ 题目3280 Cheapest Palindrome(区间DP)

    Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7148   Accepted: 34 ...

  2. 【POJ】3280 Cheapest Palindrome(区间dp)

    Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10943   Accepted: 5 ...

  3. Cheapest Palindrome(区间DP)

    个人心得:动态规划真的是够烦人的,这题好不容易写出了转移方程,结果超时,然后看题解,为什么这些题目都是这样一步一步的 递推,在我看来就是懵逼的状态,还有那个背包也是,硬是从最大的V一直到0,而这个就是 ...

  4. POJ3280 Cheapest Palindrome 【DP】

    Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6013   Accepted: 29 ...

  5. 【POJ - 3280】Cheapest Palindrome(区间dp)

    Cheapest Palindrome 直接翻译了 Descriptions 给定一个字符串S,字符串S的长度为M(M≤2000),字符串S所含有的字符的种类的数量为N(N≤26),然后给定这N种字符 ...

  6. G.Longest Palindrome Substring

    链接:https://ac.nowcoder.com/acm/contest/908/G 题意: A palindrome is a symmetrical string, that is, a st ...

  7. POJ 3280 Cheapest Palindrome DP题解

    看到Palindrome的题目.首先想到的应该是中心问题,然后从中心出发,思考怎样解决. DP问题通常是从更加小的问题转化到更加大的问题.然后是从地往上 bottom up地计算答案的. 能得出状态转 ...

  8. poj 3280 Cheapest Palindrome

    链接:http://poj.org/problem?id=3280 思路:题目给出n种m个字符,每个字符都有对应的添加和删除的代价,求出构成最小回文串的代价 dp[i][j]代表区间i到区间j成为回文 ...

  9. DP:Cheapest Palindrome(POJ 3280)

    价值最小回文字符串 题目大意:给你一个字符串,可以删除可以添加,并且每一次对一个字母的操作都带一个权,问你转成回文串最优操作数. 如果这一题我这样告诉你,你毫无疑问知道这一题是LD(Levenshti ...

  10. POJ 3280 Cheapest Palindrome(DP)

    题目链接 被以前的题目惯性思维了,此题dp[i][j],代表i到j这一段变成回文的最小花费.我觉得挺难的理解的. #include <cstdio> #include <cstrin ...

随机推荐

  1. [ABC126F] XOR Matching

    2023-01-07 题目 题目传送门 翻译 翻译 难度&重要性(1~10):1 题目来源 AtCoder 题目算法 位运算 解题思路 因为两个相同数异或为 \(0\),所以中间放一个 \(k ...

  2. Spring Cloud OpenFeign 的使用及踩坑指南

    目录 Feign 和OpenFeign Feign OpenFeign openFeign的优势 OpenFeign应用 1. 导入依赖 2. 使用 3. 日志配置 4. 数据压缩 OpenFeign ...

  3. Android RIL&IMS源码分析

    一.需求 1.了解IMS相关知识体系 2.RILD 与 RILJ.IMS回调消息的机制 二.相关概念 2.1 IMS IMS全称是IP Multimedia Subsystem,中文意义为IP多媒体子 ...

  4. 基于opencv-pyhton与opencv-c++的结合理解与学习

    2023年上半年,一直在学习opencv-c++版本,学习了其中的多个库函数 笔记链接:https://www.cnblogs.com/Tan-code/category/2339311.html o ...

  5. 程序员 不得不知道的 API 接口常识

    说实话,我非常希望自己能早点看到本篇文章,大学那个时候懵懵懂懂,跟着网上的免费教程做了一个购物商城就屁颠屁颠往简历上写. 至今我仍清晰地记得,那个电商教程是怎么定义接口的: 管它是增加.修改.删除.带 ...

  6. 基于velero及minio实现etcd数据备份与恢复

    1.Velero简介 Velero 是vmware开源的一个云原生的灾难恢复和迁移工具,它本身也是开源的,采用Go语言编写,可以安全的备份.恢复和迁移Kubernetes集群资源数据:官网https: ...

  7. 发布策略:蓝绿部署、金丝雀发布(灰度发布)、AB测试、滚动发布、红黑部署的概念与区别

    蓝绿发布(Blue-Green Deployment) 蓝绿发布提供了一种零宕机的部署方式.不停老版本,部署新版本进行测试,确认OK,将流量切到新版本,然后老版本同时也升级到新版本.始终有两个版本同时 ...

  8. Vue源码学习(五):<templete>渲染第四步,生成虚拟dom并将其转换为真实dom

    好家伙,   前情提要: 在上一篇我们已经成功将ast语法树转换为渲染函数  现在我们继续   1.项目目录 代码已开源https://github.com/Fattiger4399/analytic ...

  9. Go 代码块与作用域,变量遮蔽问题详解

    Go 代码块与作用域详解 目录 Go 代码块与作用域详解 一.引入 二.代码块 (Block) 2.1 代码块介绍 2.2 显式代码块 2.3 隐式代码块 2.4 空代码块 2.5 支持嵌套代码块 三 ...

  10. Full Tank 题解

    Full Tank 题目大意 给定一张 \(n\) 个点,\(m\) 条边的连通无向图,在每个点有一个加油站,油价为该点的点权,每条边的油耗为该边的边权.现给出若干询问,问一辆油箱容量为 \(c\) ...