题目描述

Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are currently a single string with length M (1 ≤ M ≤ 2,000) characters drawn from an alphabet of N (1 ≤ N ≤ 26) different symbols (namely, the lower-case roman alphabet).

Cows, being the mischievous creatures they are, sometimes try to spoof the system by walking backwards. While a cow whose ID is "abcba" would read the same no matter which direction the she walks, a cow with the ID "abcb" can potentially register as two different IDs ("abcb" and "bcba").

FJ would like to change the cows's ID tags so they read the same no matter which direction the cow walks by. For example, "abcb" can be changed by adding "a" at the end to form "abcba" so that the ID is palindromic (reads the same forwards and backwards). Some other ways to change the ID to be palindromic are include adding the three letters "bcb" to the begining to yield the ID "bcbabcb" or removing the letter "a" to yield the ID "bcb". One can add or remove characters at any location in the string yielding a string longer or shorter than the original string.

Unfortunately as the ID tags are electronic, each character insertion or deletion has a cost (0 ≤ cost ≤ 10,000) which varies depending on exactly which character value to be added or deleted. Given the content of a cow's ID tag and the cost of inserting or deleting each of the alphabet's characters, find the minimum cost to change the ID tag so it satisfies FJ's requirements. An empty ID tag is considered to satisfy the requirements of reading the same forward and backward. Only letters with associated costs can be added to a string.

输入格式

Line 1: Two space-separated integers: N and M

Line 2: This line contains exactly M characters which constitute the initial ID string

Lines 3..N+2: Each line contains three space-separated entities: a character of the input alphabet and two integers which are respectively the cost of adding and deleting that character.

输出格式

Line 1: A single line with a single integer that is the minimum cost to change the given name tag.

样例 #1

样例输入 #1

3 4
abcb
a 1000 1100
b 350 700
c 200 800

样例输出 #1

900

提示

If we insert an "a" on the end to get "abcba", the cost would be 1000. If we delete the "a" on the beginning to get "bcb", the cost would be 1100. If we insert "bcb" at the begining of the string, the cost would be 350 + 200 + 350 = 900, which is the minimum.

考虑区间dp。

首先初始情况就是只有一个字符或者没有字符,本身就是回文串,价值为0.

一个串如果最左边的字符\(c_l\)和最右边的字符\(c_r\)相等,那么不影响回文,递归到(l+1,r-1)

那么其他的情况下有两种选择,要不就删掉左边的字符,要不就在右边加一个和左边一样的字符。同样,要不删掉右边的字符,要不就在左边加一个和右边一样的字符。然后又有一位不许计算,递推取最小值即可。

#include<bits/stdc++.h>
#define N 2005
using namespace std;
int n,m,ad[35],de[35],dp[N][N];
char c,s[N];
int main()
{
memset(dp,0x7f,sizeof(dp));
scanf("%d%d%s",&n,&m,s+1);
for(int i=1;i<=m;i++)
dp[i][i]=dp[i][i-1]=0;
for(int i=1;i<=n;i++)
{
scanf(" %c",&c);
scanf("%d%d",&ad[c-'a'],&de[c-'a']);
}
for(int i=2;i<=m;i++)
{
for(int j=1;j+i-1<=m;j++)
{
dp[j][j+i-1]=min(dp[j+1][j+i-1]+min(de[s[j]-'a'],ad[s[j]-'a']),dp[j][j+i-2]+min(de[s[j+i-1]-'a'],ad[s[j+i-1]-'a']));
if(s[j]==s[j+i-1])
dp[j][j+i-1]=min(dp[j][j+i-1],dp[j+1][j+i-2]);
}
}
printf("%d",dp[1][m]);
return 0;
}

[USACO2007OPEN G]Cheapest Palindrome的更多相关文章

  1. POJ 题目3280 Cheapest Palindrome(区间DP)

    Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7148   Accepted: 34 ...

  2. 【POJ】3280 Cheapest Palindrome(区间dp)

    Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10943   Accepted: 5 ...

  3. Cheapest Palindrome(区间DP)

    个人心得:动态规划真的是够烦人的,这题好不容易写出了转移方程,结果超时,然后看题解,为什么这些题目都是这样一步一步的 递推,在我看来就是懵逼的状态,还有那个背包也是,硬是从最大的V一直到0,而这个就是 ...

  4. POJ3280 Cheapest Palindrome 【DP】

    Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6013   Accepted: 29 ...

  5. 【POJ - 3280】Cheapest Palindrome(区间dp)

    Cheapest Palindrome 直接翻译了 Descriptions 给定一个字符串S,字符串S的长度为M(M≤2000),字符串S所含有的字符的种类的数量为N(N≤26),然后给定这N种字符 ...

  6. G.Longest Palindrome Substring

    链接:https://ac.nowcoder.com/acm/contest/908/G 题意: A palindrome is a symmetrical string, that is, a st ...

  7. POJ 3280 Cheapest Palindrome DP题解

    看到Palindrome的题目.首先想到的应该是中心问题,然后从中心出发,思考怎样解决. DP问题通常是从更加小的问题转化到更加大的问题.然后是从地往上 bottom up地计算答案的. 能得出状态转 ...

  8. poj 3280 Cheapest Palindrome

    链接:http://poj.org/problem?id=3280 思路:题目给出n种m个字符,每个字符都有对应的添加和删除的代价,求出构成最小回文串的代价 dp[i][j]代表区间i到区间j成为回文 ...

  9. DP:Cheapest Palindrome(POJ 3280)

    价值最小回文字符串 题目大意:给你一个字符串,可以删除可以添加,并且每一次对一个字母的操作都带一个权,问你转成回文串最优操作数. 如果这一题我这样告诉你,你毫无疑问知道这一题是LD(Levenshti ...

  10. POJ 3280 Cheapest Palindrome(DP)

    题目链接 被以前的题目惯性思维了,此题dp[i][j],代表i到j这一段变成回文的最小花费.我觉得挺难的理解的. #include <cstdio> #include <cstrin ...

随机推荐

  1. ubuntu/linux 好用的截图工具 搜狗输入法自带的截图快捷键,自己觉得不方便的话,修改为自己习惯的快捷键即可

    公司要求使用ubuntu开发,在安装完必要得开发工具之后,按照我在windows平台的习惯,就准备安装一个好用的截图工具了,我比较推荐的是snipaste([https://zh.snipaste.c ...

  2. PicGo+Github图床配置

    为了将 PicGo 设置为使用 GitHub 作为图床,您需要先创建一个 GitHub 仓库用于存储图片,然后在 PicGo 中进行相应的配置.您已经创建了一个仓库,所以让我们来配置 PicGo. 安 ...

  3. php-fpm的配置

    pass 对应的php-fpm socket,这样nginx就能将请求转发给php-fpm,这个的实现真的是精彩,为什么,因为php-fpm是负责管理多个php进程的,他的稳定性令人赞叹. index ...

  4. [Python] #!/usr/bin/python 与 #!/usr/bin/env python 的区别

    区别是什么呢? #!/usr/bin/python 系统在执行这个脚本的时候, 调用固定路径的python解释器 #!/usr/bin/env python 防止用户没有吧py安装到usr/bin目录 ...

  5. 安卓APK签名注入大师(APP注入弹窗,注入打开密码,注入过期时间, 注入提示信息,一机一码)

    安卓APK签名注入大师可以给安卓APK文件一键注入APP注入弹窗,注入打开密码,注入过期时间, 注入提示信息,一机一码等功能,方便开发人员给自己的APK文件添加消息提示, 密码等功能. 可以保护文件安 ...

  6. Building-Mobile-Apps-with-Ionic-2中文翻译工作

    最近没啥工作量, 然后学完了这本书, 接着又茫然找不到该干啥, 所以想着何不翻译这个书呢. 这本书首先给我们普及了Ionic 2的基础知识, Ionic 2和Ionic 1有本质上的区别, Ionic ...

  7. Ds100p -「数据结构百题」61~70

    61.P5355 [Ynoi2017]由乃的玉米田 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美. 这排玉米一共有 \(N\) 株,它们的高度参差不齐. 由乃认为玉米田不美,所以她决定出 ...

  8. 简化 Go 开发:使用强大的工具提高生产力

    作为 Go 开发人员,应该都知道维持简洁高效开发工作流程的重要性.为了提高工作效率和代码质量,简化开发流程并自动执行重复性任务至关重要.在本文中,我们将探讨一些强大的工具和技术,它们将简化 Go 开发 ...

  9. jquery设置图片可手动拖拽

    JQuery是一款流行的JavaScript框架,可以轻松实现网页交互效果.而其中一种常见效果是图片手动拖拽.以下是设置图片手动拖拽的JQuery代码. 1 2 3 4 5 6 7 8 9 10 11 ...

  10. 入门篇-其之六-附录一-以Java字节码的角度分析i++和++i

    前言:众所周知,i++和++i的区别是:i++先将i的值赋值给变量,再将i的值自增1:而++i则是先将i的值自增1,再将结果赋值给变量.因此,二者最终都给i自增了1,只是方式不同而已. 当然,如果在面 ...