进程D 状态的产生及原因解释
在 Linux 系统中,进程的 D 状态表示进程处于不可中断的睡眠状态 (Uninterruptible Sleep)。这种状态通常由进程等待某些资源或事件引起,这些资源或事件无法立即可用。以下是一些常见的导致进程进入 D 状态的原因:
- I/O 操作:
- 等待磁盘 I/O 完成:进程可能正在等待磁盘读取或写入操作完成。由于磁盘 I/O 操作通常需要较长时间,因此进程会进入不可中断的睡眠状态,直到 I/O 操作完成。
- 等待网络 I/O 完成:进程可能正在等待网络数据的接收或发送。
- 文件系统操作:
- 等待文件系统锁:进程可能正在等待获取文件系统的某个锁,以便进行文件操作。
- 文件系统的同步操作:例如,
sync操作可能会导致进程进入 D 状态,直到所有缓冲区数据都写入磁盘。
- 内存管理:
- 等待内存分页:如果系统内存不足,进程可能需要等待内存分页操作完成。
- 等待内存交换:在使用交换空间的情况下,进程可能需要等待交换操作完成。
- 硬件设备:
- 等待硬件设备响应:进程可能正在等待某个硬件设备的响应,例如等待硬件驱动程序完成某个操作。
- 同步原语:
- 等待互斥锁或信号量:进程可能正在等待其他进程释放某个互斥锁或信号量。
需要注意的是,进程处于 D 状态时是不可中断的,这意味着即使是信号也无法唤醒该进程。D 状态的存在可能表明系统正在执行某些耗时的操作,但如果进程长时间处于 D 状态,这可能是系统出现问题的一个信号,例如磁盘故障、硬件问题或驱动程序问题。此时可能需要进一步调查以确定问题的根本原因。
等待IO操作为什么会导致进程进入不可打断唤醒状态
在 Linux 系统中,进程在等待 I/O 操作时进入不可中断的睡眠状态 (D 状态) 是由于以下几个原因:
- 确保数据一致性:
- 当进程正在进行重要的 I/O 操作时,例如读取或写入磁盘数据,确保数据的一致性和完整性至关重要。如果进程在等待 I/O 操作完成时被中断,可能会导致数据不一致或损坏。因此,进程被放入不可中断的睡眠状态,以避免被信号中断。
- 硬件依赖性:
- 一些 I/O 操作是直接与硬件设备交互的,例如磁盘读写、网络数据传输等。这些操作往往需要等待硬件设备完成相应的任务,而硬件设备的响应时间是不可预知的。将进程放入不可中断的睡眠状态,可以确保在等待硬件设备响应期间,进程不会被其他操作干扰。
- 减少上下文切换开销:
- 不可中断的睡眠状态可以减少上下文切换的开销。在这种状态下,内核不会尝试频繁地唤醒和调度该进程,这样可以减少不必要的上下文切换,优化系统性能。
- 防止资源竞争:
- 当进程在等待某些关键资源时,例如文件系统锁、内存分页等,不可中断的睡眠状态可以防止资源竞争和死锁情况的发生。这样可以确保系统在处理这些关键资源时的稳定性。
- 内核实现机制:
- 内核在设计时,有些 I/O 操作被实现为不可中断的睡眠状态,这是由于这些操作的复杂性和关键性。例如,在处理磁盘 I/O 时,内核需要保证数据的一致性和完整性,因此选择将进程放入不可中断的睡眠状态。
总结来说,进程在等待 I/O 操作时进入不可中断的睡眠状态,是为了确保数据一致性和系统稳定性,减少上下文切换开销,防止资源竞争,并符合内核设计的实现机制。尽管这种状态有时可能导致系统响应变慢,但它在确保系统可靠性和数据完整性方面起到了重要作用。
低内存状态造成大量进程进入D 状态:
在低内存状态下,大量进程进入 D 状态(不可中断的睡眠状态)通常是由于内存管理和 I/O 操作等待所引起的。这可以通过查看 Linux 内核的内存管理和 I/O 子系统的源码来理解。以下是对这一现象的详细解释:
内存管理和页回收
当系统处于低内存状态时,内核需要回收内存页,以便为新的内存分配请求提供足够的可用内存。这个过程涉及页回收 (page reclaim) 和交换 (swap) 操作。内存管理部分的主要相关源码位于 mm/vmscan.c 和 mm/swap.c。
页回收过程
在 mm/vmscan.c 中,函数 shrink_node() 和 shrink_zone() 会被调用来回收内存页。当内存不足时,这些函数会尝试将不常用的页面从内存中移除,写入交换空间,或释放内存。以下是一个简化的代码示例:
static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
{
// 尝试回收内存页
for_each_evictable_lru(lru) {
shrink_list(lru, pgdat, sc);
}
}
static void shrink_zone(struct zone *zone, struct scan_control *sc)
{
// 尝试从特定的内存区域回收页
for_each_evictable_lru(lru) {
shrink_list(lru, zone, sc);
}
}
交换操作
当需要将页面交换到磁盘时,涉及的函数通常位于 mm/swap.c。这些函数会将内存页面写入交换设备。这个过程可能会导致进程等待磁盘 I/O 操作完成,从而进入不可中断的睡眠状态。例如,函数 __swap_writepage() 会被调用来执行交换操作:
int __swap_writepage(struct page *page, struct writeback_control *wbc)
{
// 将页面写入交换设备
// 如果交换操作需要等待磁盘 I/O 完成,进程将进入 D 状态
}
文件系统和 I/O 操作
在低内存状态下,进程可能会因为等待 I/O 操作而进入 D 状态。这是因为内核需要将脏页面(dirty pages)写回磁盘,以释放内存。文件系统和块设备 I/O 的相关源码位于 fs/ 和 block/ 目录中。
文件系统写回
当需要将脏页面写回磁盘时,文件系统会调用 writeback 机制。相关代码位于 fs/fs-writeback.c。函数 writeback_single_inode() 和 __writeback_single_inode() 会被调用来写回脏页面:
static int __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
{
// 将脏页面写回磁盘
// 如果磁盘 I/O 操作需要时间,进程将进入 D 状态
}
块设备 I/O
块设备 I/O 操作的相关代码位于 block/ 目录中。当进程等待块设备的 I/O 操作完成时,进程也会进入不可中断的睡眠状态。
进程D 状态的产生及原因解释的更多相关文章
- linux下查看进程的状态 /proc/[pid]/status
查看进程的状态: 1.查看进程的pid,以java为例:ps -ef | grep java 2.查看进程状态:cat /proc/[pid]/status 关键字: linux [root@loca ...
- NtQuerySystemInformation获取进程/线程状态
__kernel_entry NTSTATUS NtQuerySystemInformation( SYSTEM_INFORMATION_CLASS SystemInformationClass, P ...
- Linux进程的状态转换图
http://blog.csdn.net/mu0206mu/article/details/7348618 ◆运行状态(TASK_RUNNING) 当进程正在被CPU执行,或已经准备就绪随时可由调度程 ...
- Linux下分析某个进程CPU占用率高的原因
Linux下分析某个进程CPU占用率高的原因 通过top命令找出消耗资源高的线程id,利用strace命令查看该线程所有系统调用 1.top 查到占用cpu高的进程pid 2.查看该pid的线程 ...
- Operating System-Process(1)什么是进程&&进程的创建(Creation)&&进程的终止(Termination)&&进程的状态(State)
本文阐述操作系统的核心概念之一:进程(Process),主要内容: 什么是进程 进程的创建(Creation) 进程的终止(Termination) 进程的状态(State) 一.什么是进程 1.1 ...
- linux0.11内核源码——进程各状态切换的跟踪
准备工作 1.进程的状态有五种:新建(N),就绪或等待(J),睡眠或阻塞(W),运行(R),退出(E),其实还有个僵尸进程,这里先忽略 2.编写一个样本程序process.c,里面实现了一个函数 /* ...
- UNIX环境编程学习笔记(21)——进程管理之获取进程终止状态的 wait 和 waitpid 函数
lienhua342014-10-12 当一个进程正常或者异常终止时,内核就向其父进程发送 SIGCHLD信号.父进程可以选择忽略该信号,或者提供一个该信号发生时即被调用的函数(信号处理程序).对于这 ...
- 转载:进程退出状态--waitpid status意义
最近遇到一个进程突然退出的问题,由于没有注册signalhandler所以没有捕捉到任何信号. 但是从log中看到init waitpid返回的status为0x008b,以前对status不是很了解 ...
- 查找linux下进程占用CPU过高的原因,以php-fpm为例
很多时候,线上服务器的进程在某时间段内长时间占用CPU过高,为了优化,我们需要找出原因. 1.找出占用CPU最高的10个进程 ps aux | sort -k3nr | head -n 10 或查看占 ...
- linux进程D状态_转
Linux进程状态:S (TASK_INTERRUPTIBLE),可中断的睡眠状态. 处于这个状态的进程因为等待某某事件的发生(比如等待socket连接.等待信号量),而被挂起.这些进程的task_s ...
随机推荐
- TCP和KCP协议
TCP协议 KCP是一个快速可靠协议,能以比 TCP 浪费 10%-20% 的带宽的代价,换取平均延迟降低 30%-40%,且最大延迟降低三倍的传输效果.纯算法实现,并不负责底层协议(如UDP)的收发 ...
- java开发环境安装IDEA+jdk1.8
一. 需要得安装包 (1)IDEA破解版.zip (2)jdk1.8.0_25.7z 获取方式(免费): (1) 登录-注册:http://resources.kittytiger.cn/ ...
- 我用Awesome-Graphs看论文:解读Naiad
Naiad论文:<Naiad: A Timely Dataflow System> 前面通过文章<论文图谱当如是:Awesome-Graphs用200篇图系统论文打个样>向大家 ...
- 数值优化算法-BFGS
参考: https://www.cnblogs.com/Leo_wl/p/3367323.html 牛顿法: 使用牛顿法优化函数 f(θ) 最小值时,每次计算获得新的\(θ\)值,即\(θ_{k+1} ...
- MindSpore 数据加载及处理
参考地址: https://www.mindspore.cn/tutorial/zh-CN/r1.2/dataset.html ==================================== ...
- openAI的比赛retro contest的一些细节设置(Detail)
2018年openAI公司搞了一个比赛retro contest,该比赛目的是为了在自家的库retro上测试迁移强化学习的性能,虽然这个比赛已经结束多年但是现在了解一些也是有一定益处的. 比赛细节介绍 ...
- 基于SiliconCloud快速体验GraphRag.Net
SiliconCloud介绍 SiliconCloud 基于优秀的开源基础模型,提供高性价比的 GenAI 服务. 不同于多数大模型云服务平台只提供自家大模型 API,SiliconCloud上架了包 ...
- 零基础学习人工智能—Python—Pytorch学习(三)
前言 这篇文章主要两个内容. 一,把上一篇关于requires_grad的内容补充一下. 二,介绍一下线性回归. 关闭张量计算 关闭张量计算.这个相对简单,阅读下面代码即可. print(" ...
- CF506D题解
Mr. Kitayuta's Colorful Graph 算法:根号分治. 题目大意先说一下:给一个 \(n\) 点 \(m\) 边的无向图,边有颜色.\(q\) 组询问,每次给出 \(u,v\), ...
- 为了给Javaer落地DDD,我们不得不写开源组件
本文上回书接<这是DDD建模最难的部分(其实很简单)>,欢迎关注我的同名公众号. https://mp.weixin.qq.com/s/HZKMLF0_I10iczzp2mAR-w 故 ...