【luogu题解】P5461 赦免战俘
一、题目
现有 \(2^n\times2^n\ (n≤10)\) 名作弊者站成一个正方形方阵等候 kkksc03 的发落。kkksc03 决定赦免一些作弊者。他将正方形矩阵均分为 4 个更小的正方形矩阵,每个更小的矩阵的边长是原矩阵的一半。其中左上角那一个矩阵的所有作弊者都将得到赦免,剩下 3 个小矩阵中,每一个矩阵继续分为 4 个更小的矩阵,然后通过同样的方式赦免作弊者……直到矩阵无法再分下去为止。所有没有被赦免的作弊者都将被处以棕名处罚。
给出 n,请输出每名作弊者的命运,其中 0 代表被赦免,1 代表不被赦免。
二、答案
一道经典的dp题。
在写dp之前,我们需要明确以下几个东西:状态的表示,状态转移方程,边界条件和答案的
表示。
1. 状态的表示
\(dp_{i,j}\) 表示第 i 行 j 列作弊者的命运(其中 0 代表被赦免,1 代表不被赦免)。
2. 状态转移方程
\]
3. 边界条件
\]
4. 答案的表示
\]
三、时间复杂度
整体时间复杂度为 \(O({2^n}^2)\) ,也就是 \(O(2^n\times 2^n)\) ,其中 \(100\%:(n\le10)\) 。
四、空间复杂度
整体空间复杂度为 \(O({2^n}^2)\) ,也就是 \(O(2^n\times 2^n)\) ,其中 \(100\%:(n\le10)\) 。
五、AC代码
#include<bits/stdc++.h>
using namespace std;
bool ans[2000][2000];
int main() {
int n;
scanf("%d",&n);
for(int i=1;i<=(1<<n);i++) {
for(int j=1;j<=(1<<n);j++) {
ans[i][j]=1;
}
}
ans[0][(1<<n)+1]=1;
for(int i=1;i<=(1<<n);i++) {
for(int j=1;j<=(1<<n);j++) {
ans[i][j]=ans[i-1][j]^ans[i-1][j+1];
}
}
for(int i=1;i<=(1<<n);i++) {
for(int j=1;j<=(1<<n);j++) {
printf("%d ",ans[i][j]);
}
printf("\n");
}
return 0;
}
【luogu题解】P5461 赦免战俘的更多相关文章
- 洛谷 P5461 赦免战俘 题解
P5461 赦免战俘 题目背景 借助反作弊系统,一些在月赛有抄袭作弊行为的选手被抓出来了! 题目描述 现有 \(2^n\times 2^n (n\le10)\) 名作弊者站成一个正方形方阵等候 kkk ...
- 【递归】P5461赦免战俘
题目相关 原题链接:P5461 赦免战俘 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题目背景 借助反作弊系统,一些在月赛有抄袭作弊行为的选手被抓出来了! 题目描述 现有 \(2 ...
- 洛谷 P5461 赦免战俘
洛谷 P5461 赦免战俘 传送门 思路 洛谷7月月赛第一题 着实是一道大水题,然后我月赛的时候没做出来...... 就是一道大模拟题呀,直接dfs就好了,我是反着处理的,所以最后要输出\(1-a[i ...
- luogu题解P2312解方程--暴力模+秦九韶
题目链接 https://www.luogu.org/problemnew/show/P2312 分析 这道题很毒啊,这么大的数. 但是如果多项式\(\sum_{i=0}^N a[i]*X^i=0\) ...
- luogu题解P1967货车运输--树链剖分
题目链接 https://www.luogu.org/problemnew/show/P1967 分析 NOIp的一道裸题,直接在最大生成树上剖分取最小值一下就完事了,非常好写,常数也比较小,然而题解 ...
- luogu题解P4198楼房重建--线段树神操作
题目链接 https://www.luogu.org/problemnew/show/P4198 分析 一句话题意,一条数轴上有若干楼房,坐标为\(xi\)的楼房有高度\(hi\),那么它的斜率为\( ...
- luogu题解P1032字串变换--BFS+STL:string骚操作
题目链接 https://www.luogu.org/problemnew/show/P1032 分析 这题本来很裸的一个BFS,发现其中的字符串操作好烦啊.然后就翻大佬题解发现用STL中的strin ...
- luogu题解P2486[SDOI2011]染色--树链剖分+trick
题目链接 https://www.luogu.org/problemnew/show/P2486 分析 看上去又是一道强行把序列上问题搬运到树上的裸题,然而分析之后发现并不然... 首先我们考虑如何在 ...
- luogu题解 P3709 【大爷的字符串题】
题目链接: https://www.luogu.org/problemnew/show/P3709 思路: 首先我是没读懂题目的,浏览了讨论区的dalao发现才知道就是求区间众数的出现次数. 然后肯定 ...
- luogu题解 P2184 【贪婪大陆】
题目链接: https://www.luogu.org/problemnew/show/P2184 思路: 首先我想吐槽一下为什么现有题解中的做法都是一样的,而且还比较难以理解; 我就讲下我的做法,本 ...
随机推荐
- 图形视图体系结构——Graphics View
Graphics View框架结构的特点.主要包含元素及坐标系统. 1.特点 Graphics View框架结构的主要特点如下. (1) Graphics View框架结构中,系统可以利用Qt绘图系统 ...
- 王道oj/problem13(用递归数楼梯)
网址:http://oj.lgwenda.com/problem/13 思路:用递归写step(int n):return step(n-1)+step(n-2); 停止条件是:n=1为1:n=2为2 ...
- 【NestJS系列】核心概念:Module模块
theme: fancy highlight: atelier-dune-dark 前言 模块指的是使用@Module装饰器修饰的类,每个应用程序至少有一个模块,即根模块.根模块是Nest用于构建应用 ...
- ArcMap用一个面要素擦除另一个面要素的部分
本文介绍在ArcMap软件中,基于擦除("Erase")工具,对矢量面要素的部分区域加以剔除的操作. 假如我们已知这样一个研究区域,其包括了陆地与水体两个部分. 与此同 ...
- CodeForces-1324E-Sleeping-Schedule
题意 \(Vova\)有一个睡眠时间表,一天有\(h\)小时,\(Vova\)会睡\(n\)次觉,一次睡一天,在第\(i-1\)次睡醒后,\(Vova\)在\(a_i\)或\(a_i-1\)个小时候可 ...
- 提高 Web 开发效率的10个VS Code扩展插件,你知道吗?
前言 一个出色的开发工具可以显著提高开发人员的开发效率,而优秀的扩展插件则能更进一步地提升工具的效率.在前端开发领域,VSCode毫无疑问是目前最受欢迎的开发工具.为了帮助前端开发人员提高工作效率,今 ...
- 在 Android Studio Java 项目里混合 Kotlin 编程
首先,先搞明白一个概念,这里的 Java 混合 Kotlin 是指文件层级的混合,即 Java 代码还是写在 .java 文件中,Kotlin 代码还是写在 .kt 文件中,只不过是可以在 Java ...
- 【WPF】后台代码实现绑定ComboBox的SelectedItem功能
WPF 开发程序目前最好的用的设计模式为MVVM模式,实现了前后端的分离,前端页面的更改不需要后台代码逻辑发生变化,同理,后台逻辑发生变化时基本上也不需要修改前台的页面布局等信息. 由于某些原因,可能 ...
- paramiko免密登陆
paramiko免密登陆 # -*- coding: utf-8 -*- import paramiko pkey='D:/pycharm_workspace/testpy/ssh_paramiko_ ...
- 使用SpringBoot开发一个POST接口
SpringBoot项目的分层 SpringBoot框架项目一般分为五层: View层:向用户展示页面 Controller层:前后端交互层,接收前端请求,调用Service层中的方法,接收Servi ...