【LeetCode动态规划#16】矩阵的最小路径和、三角形的最小路径和
矩阵的最小路径和
给定一个包含非负整数的 *m* x *n*
网格 grid
,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:一个机器人每次只能向下或者向右移动一步。
示例 1:
输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。
示例 2:
输入:grid = [[1,2,3],[4,5,6]]
输出:12
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 200
0 <= grid[i][j] <= 100
代码与思路
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int row = grid.size();
int col = grid[0].size();
vector<vector<int>> dp(row + 1, vector<int>(col + 1, 0));
//这里要初始化,并且也要遵循dp数组的含义
//即:走到(i,j)时的最小路径和为dp[i][j]
//因为走到一个方块只能从该方块的左边和上边过来
//所以初始时上和左都是网格边界,没东西走过来,此时到起始点位的最小路径和就是当前点位的路径数值
dp[0][0] = grid[0][0];
//还是遵守“只能从上方和左边到达某个位置”的规律
//于是有了下面三种情况,构成递推公式
for(int i = 1; i < row; ++i){//网格最上方的路径和
//到达(i,j)的最小路径和 = 到达(i - 1, j)的最小路径和 + i处的路径值
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for(int j = 1; j < col; ++j){//网格最左边的路径和
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
//上面两种情况有点像在初始化dp数组,但起始不完全是
for(int i = 1; i < row; ++i){//网格内部
for(int j = 1; j < col; ++j){
//取从上方和左方中小的那一个座位更新值
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[row - 1][col - 1];
}
};
三角形最小路径和
给定一个三角形 triangle
,找出自顶向下的最小路径和。
每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i
,那么下一步可以移动到下一行的下标 i
或 i + 1
。
示例 1:
输入:triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
输出:11
解释:如下面简图所示:
2
3 4
6 5 7
4 1 8 3
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。
示例 2:
输入:triangle = [[-10]]
输出:-10
提示:
1 <= triangle.length <= 200
triangle[0].length == 1
triangle[i].length == triangle[i - 1].length + 1
-104 <= triangle[i][j] <= 104
思路
根据题意,我们还是只能往下或者往右遍历(即求某个位置的路径,只能从其上方或者左侧推导而来)
dp数组的含义仍然是:走到(i,j)时的最小路径和为dp[i][j]
题目要找的是"找出自顶向下的最小路径和",一般来说就会从上往下遍历三角形了,但是这样会有麻烦
三角形的顶点是唯一的,但底部边有很多个位置,这就意味着我们如果从从上往下遍历三角形最后会得到多条路径结果,然后还需要去选择哪一条的路径和最小
如果反着来,从三角形底部往上遍历,一开始就选中底部路径值最小的位置,这样就不需要再遍历结束后再选择最小路径了
代码
从三角形底部往上遍历
注意:是从底边再往上一层开始,也就是倒数第二层
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
int layer = triangle.size(); // 获取三角形的层数
vector<vector<int>> dp(layer + 1, vector<int>(layer + 1, 0));
for (int i = layer - 1; i >= 0; --i) { // 从三角形的底部倒数第二层开始向上遍历
for (int j = 0; j < triangle[i].size(); ++j) {//在层中从左往右遍历
//最外层的for循环是使得遍历方向一直向上的
//这里要取当前层和它的下一层之间的最小值来更新dp
//比如,在最开始遍历的时候,是倒数第二层,此时还要去倒数第一层的对应位置查看dp值,取小的来更新dp
dp[i][j] = min(dp[i + 1][j], dp[i + 1][j + 1]) + triangle[i][j];
}
} // 从底层向顶层求最小路径和
//求自顶向下的最小路径和,根据dp数组的含义就是求00处的dp值呗
return dp[0][0];
}
};
【LeetCode动态规划#16】矩阵的最小路径和、三角形的最小路径和的更多相关文章
- 【BZOJ1494】【NOI2007】生成树计数(动态规划,矩阵快速幂)
[BZOJ1494][NOI2007]生成树计数(动态规划,矩阵快速幂) 题面 Description 最近,小栋在无向连通图的生成树个数计算方面有了惊人的进展,他发现: ·n个结点的环的生成树个数为 ...
- leetcode_935. Knight Dialer_动态规划_矩阵快速幂
https://leetcode.com/problems/knight-dialer/ 在如下图的拨号键盘上,初始在键盘中任意位置,按照国际象棋中骑士(中国象棋中马)的走法走N-1步,能拨出多少种不 ...
- 快速上手leetcode动态规划题
快速上手leetcode动态规划题 我现在是初学的状态,在此来记录我的刷题过程,便于以后复习巩固. 我leetcode从动态规划开始刷,语言用的java. 一.了解动态规划 我上网查了一下动态规划,了 ...
- 【CF1151F】Sonya and Informatics(动态规划,矩阵快速幂)
[CF1151F]Sonya and Informatics(动态规划,矩阵快速幂) 题面 CF 题解 考虑一个暴力\(dp\).假设有\(m\)个\(0\),\(n-m\)个\(1\).设\(f[i ...
- 【BZOJ5298】[CQOI2018]交错序列(动态规划,矩阵快速幂)
[BZOJ5298][CQOI2018]交错序列(动态规划,矩阵快速幂) 题面 BZOJ 洛谷 题解 考虑由\(x\)个\(1\)和\(y\)个\(0\)组成的合法串的个数. 显然就是把\(1\)当做 ...
- 【BZOJ4870】组合数问题(动态规划,矩阵快速幂)
[BZOJ4870]组合数问题(动态规划,矩阵快速幂) 题面 BZOJ 洛谷 题解 显然直接算是没法做的.但是要求的东西的和就是从\(nk\)个物品中选出模\(k\)意义下恰好\(r\)个物品的方案数 ...
- CF954F Runner's Problem(动态规划,矩阵快速幂)
CF954F Runner's Problem(动态规划,矩阵快速幂) 题面 CodeForces 翻译: 有一个\(3\times M\)的田野 一开始你在\((1,2)\)位置 如果你在\((i, ...
- LeetCode:螺旋矩阵||【59】
LeetCode:螺旋矩阵||[59] 题目描述 给定一个正整数 n,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵. 示例: 输入: 3 输出: [ [ 1, 2, 3 ...
- LeetCode:螺旋矩阵【54】
LeetCode:螺旋矩阵[54] 题目描述 给定一个包含 m x n 个元素的矩阵(m 行, n 列),请按照顺时针螺旋顺序,返回矩阵中的所有元素. 示例 1: 输入: [ [ 1, 2, 3 ], ...
- BZOJ 1614 [Usaco2007 Jan]Telephone Lines架设电话线:spfa + 二分【路径中最大边长最小】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1614 题意: 给你一个无向图,n个点,m条边. 你需要找出一条从1到n的路径,使得这条路径 ...
随机推荐
- [转帖]线上Java 高CPU占用、高内存占用排查思路
一.前言 处理过线上问题的同学基本上都会遇到系统突然运行缓慢,CPU 100%,以及Full GC次数过多的问题.当然,这些问题的最终导致的直观现象就是系统运行缓慢,并且有大量的报警.本文主要针对系统 ...
- 解锁前端新潜能:如何使用 Rust 锈化前端工具链
前言 近年来,Rust的受欢迎程度不断上升.首先,在操作系统领域,Rust 已成为 Linux 内核官方认可的开发语言之一,Windows 也宣布将使用 Rust 来重写内核,并重写部分驱动程序. ...
- 深入浅出RPC服务 | 不同层的网络协议
导读: 本系列文章从RPC产生的历史背景开始讲解,涉及RPC核心原理.RPC实现.JSF的实现等,通过图文类比的方式剖析它的内部世界,让大家对RPC的设计思想有一个宏观的认识. 作者:王禹展 京东 ...
- 【杂题,树】【Uoj】Uoj618 【JOISC2021】聚会 2
2023.7.3 Problem Link 给定一棵 \(n\) 个点的树,对于一个点集 \(S\),定义 \(f(u,S)\) 为 \(\min_u \sum_{v\in S} \mathrm{di ...
- vue中v-model修饰符的使用和组件使用v-model
1.lazy 修饰器 lazy修饰器在input框中的表现效果是: 当你失去焦点后值才会跟新. 它的跟新时机是失去焦点后 这个修饰器在项目中运用的场景较少 <template> <d ...
- 【JS 逆向百例】网洛者反爬练习平台第六题:JS 加密,环境模拟检测
关注微信公众号:K哥爬虫,持续分享爬虫进阶.JS/安卓逆向等技术干货! 声明 本文章中所有内容仅供学习交流,抓包内容.敏感网址.数据接口均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后 ...
- ABP Vnext 微服务 常见问题
1.token问题 原因:拿token和认证token的服务器不一致 2.minio访问报错 minio错误 S3 API Request made to Console port. S3 R 解决方 ...
- Golang zip压缩文件读写操作
创建zip文件 golang提供了archive/zip包来处理zip压缩文件,下面通过一个简单的示例来展示golang如何创建zip压缩文件: func createZip(filename str ...
- python中可变参数与装饰器的例子
python的可变参数 方法定义 #*args是可以传list类型的可变参数,**kwargs是可以传dict的可变参数 def wrapper(*args, **kwargs): 使用示例 def ...
- ios马甲包过审
说明:这篇文章写的比较早了,大概是2021年上半年写的,一直放在草稿箱,目前这些方法是否被屏蔽有待验证. App Store审核机制 机器审核 人工审核 人工审核大概是玩15分钟的样子,同时有上百审核 ...