Python图像处理丨带你掌握图像几何变换
摘要:本篇文章主要讲解图像仿射变换和图像透视变换,通过Python调用OpenCV函数实。
本文分享自华为云社区《[Python图像处理] 十二.图像几何变换之图像仿射变换、图像透视变换和图像校正》,作者: eastmount 。
一.图像仿射变换
图像仿射变换又称为图像仿射映射,是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。通常图像的旋转加上拉升就是图像仿射变换,仿射变换需要一个M矩阵实现,但是由于仿射变换比较复杂,很难找到这个M矩阵.
OpenCV提供了根据变换前后三个点的对应关系来自动求解M的函数——cv2.getAffineTransform(pos1,pos2),其中pos1和pos2表示变换前后的对应位置关系,输出的结果为仿射矩阵M,接着使用函数cv2.warpAffine()实现图像仿射变换。图5-14是仿射变换的前后效果图。

图像仿射变换的函数原型如下:
M = cv2.getAffineTransform(pos1,pos2)
- pos1表示变换前的位置
- pos2表示变换后的位置
cv2.warpAffine(src, M, (cols, rows))
- src表示原始图像
- M表示仿射变换矩阵
- (rows,cols)表示变换后的图像大小,rows表示行数,cols表示列数
实现代码如下所示:
#encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图片
src = cv2.imread('test.bmp')
#获取图像大小
rows, cols = src.shape[:2]
#设置图像仿射变换矩阵
pos1 = np.float32([[50,50], [200,50], [50,200]])
pos2 = np.float32([[10,100], [200,50], [100,250]])
M = cv2.getAffineTransform(pos1, pos2)
#图像仿射变换
result = cv2.warpAffine(src, M, (cols, rows))
#显示图像
cv2.imshow("original", src)
cv2.imshow("result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
输出效果图如下所示:

二.图像透视变换
图像透视变换(Perspective Transformation)的本质是将图像投影到一个新的视平面,同理OpenCV通过函数cv2.getPerspectiveTransform(pos1,pos2)构造矩阵M,其中pos1和pos2分别表示变换前后的4个点对应位置。得到M后在通过函数cv2.warpPerspective(src,M,(cols,rows))进行透视变换。
图像透视变换的函数原型如下:
M = cv2.getPerspectiveTransform(pos1, pos2)
- pos1表示透视变换前的4个点对应位置
- pos2表示透视变换后的4个点对应位置
cv2.warpPerspective(src,M,(cols,rows))
- src表示原始图像
- M表示透视变换矩阵
- (rows,cols)表示变换后的图像大小,rows表示行数,cols表示列数
代码如下:
#encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图片
src = cv2.imread('test01.jpg')
#获取图像大小
rows, cols = src.shape[:2]
#设置图像透视变换矩阵
pos1 = np.float32([[114, 82], [287, 156], [8, 322], [216, 333]])
pos2 = np.float32([[0, 0], [188, 0], [0, 262], [188, 262]])
M = cv2.getPerspectiveTransform(pos1, pos2)
#图像透视变换
result = cv2.warpPerspective(src, M, (190, 272))
#显示图像
cv2.imshow("original", src)
cv2.imshow("result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
输出结果如下图所示:

三.基于图像透视变换的图像校正
下面参考 t6_17大神 的文章,通过图像透视变换实现图像校正功能。
假设现在存在一张A4纸图像,现在需要通过调用图像透视变换校正图像。

代码如下所示:
#encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图片
src = cv2.imread('test01.jpg')
#获取图像大小
rows, cols = src.shape[:2]
#将源图像高斯模糊
img = cv2.GaussianBlur(src, (3,3), 0)
#进行灰度化处理
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#边缘检测(检测出图像的边缘信息)
edges = cv2.Canny(gray,50,250,apertureSize = 3)
cv2.imwrite("canny.jpg", edges)
#通过霍夫变换得到A4纸边缘
lines = cv2.HoughLinesP(edges,1,np.pi/180,50,minLineLength=90,maxLineGap=10)
#下面输出的四个点分别为四个顶点
for x1,y1,x2,y2 in lines[0]:
print(x1,y1),(x2,y2)
for x1,y1,x2,y2 in lines[1]:
print(x1,y1),(x2,y2)
#绘制边缘
for x1,y1,x2,y2 in lines[0]:
cv2.line(gray, (x1,y1), (x2,y2), (0,0,255), 1)
#根据四个顶点设置图像透视变换矩阵
pos1 = np.float32([[114, 82], [287, 156], [8, 322], [216, 333]])
pos2 = np.float32([[0, 0], [188, 0], [0, 262], [188, 262]])
M = cv2.getPerspectiveTransform(pos1, pos2)
#图像透视变换
result = cv2.warpPerspective(src, M, (190, 272))
#显示图像
cv2.imshow("original", src)
cv2.imshow("result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
运行结果如下图所示:


四.图像几何变换总结
最后补充图像几何代码所有变换,希望读者能体会下相关的代码,并动手实践下。输出结果以女神为例:

完整代码如下:
#encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图片
img = cv2.imread('test3.jpg')
image = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
#图像平移矩阵
M = np.float32([[1, 0, 80], [0, 1, 30]])
rows, cols = image.shape[:2]
img1 = cv2.warpAffine(image, M, (cols, rows))
#图像缩小
img2 = cv2.resize(image, (200,100))
#图像放大
img3 = cv2.resize(image, None, fx=1.1, fy=1.1)
#绕图像的中心旋转
#源图像的高、宽 以及通道数
rows, cols, channel = image.shape
#函数参数:旋转中心 旋转度数 scale
M = cv2.getRotationMatrix2D((cols/2, rows/2), 30, 1)
#函数参数:原始图像 旋转参数 元素图像宽高
img4 = cv2.warpAffine(image, M, (cols, rows))
#图像翻转
img5 = cv2.flip(image, 0) #参数=0以X轴为对称轴翻转
img6 = cv2.flip(image, 1) #参数>0以Y轴为对称轴翻转
#图像的仿射
pts1 = np.float32([[50,50],[200,50],[50,200]])
pts2 = np.float32([[10,100],[200,50],[100,250]])
M = cv2.getAffineTransform(pts1,pts2)
img7 = cv2.warpAffine(image, M, (rows,cols))
#图像的透射
pts1 = np.float32([[56,65],[238,52],[28,237],[239,240]])
pts2 = np.float32([[0,0],[200,0],[0,200],[200,200]])
M = cv2.getPerspectiveTransform(pts1,pts2)
img8 = cv2.warpPerspective(image,M,(200,200))
#循环显示图形
titles = [ 'source', 'shift', 'reduction', 'enlarge', 'rotation', 'flipX', 'flipY', 'affine', 'transmission']
images = [image, img1, img2, img3, img4, img5, img6, img7, img8]
for i in xrange(9):
plt.subplot(3, 3, i+1), plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
Python图像处理丨带你掌握图像几何变换的更多相关文章
- Python图像处理丨带你认识图像量化处理及局部马赛克特效
摘要:本文主要讲述如何进行图像量化处理和采样处理及局部马赛克特效. 本文分享自华为云社区<[Python图像处理] 二十.图像量化处理和采样处理及局部马赛克特效>,作者: eastmoun ...
- Python图像处理丨三种实现图像形态学转化运算模式
摘要:本篇文章主要讲解Python调用OpenCV实现图像形态学转化,包括图像开运算.图像闭运算和梯度运算 本文分享自华为云社区<[Python图像处理] 九.形态学之图像开运算.闭运算.梯度运 ...
- 跟我学Python图像处理丨带你掌握傅里叶变换原理及实现
摘要:傅里叶变换主要是将时间域上的信号转变为频率域上的信号,用来进行图像除噪.图像增强等处理. 本文分享自华为云社区<[Python图像处理] 二十二.Python图像傅里叶变换原理及实现> ...
- 跟我学Python图像处理丨带你入门OpenGL
摘要:介绍Python和OpenGL的入门知识,包括安装.语法.基本图形绘制等. 本文分享自华为云社区<[Python图像处理] 二十七.OpenGL入门及绘制基本图形(一)>,作者:ea ...
- Python图像处理丨图像腐蚀与图像膨胀
摘要:本篇文章主要讲解Python调用OpenCV实现图像腐蚀和图像膨胀的算法. 本文分享自华为云社区<[Python图像处理] 八.图像腐蚀与图像膨胀>,作者: eastmount . ...
- 跟我学Python图像处理丨基于灰度三维图的图像顶帽运算和黑帽运算
摘要:本篇文章结合灰度三维图像讲解图像顶帽运算和图像黑猫运算,通过Python调用OpenCV函数实现. 本文分享自华为云社区<[Python图像处理] 十三.基于灰度三维图的图像顶帽运算和黑帽 ...
- Python图像处理丨基于OpenCV和像素处理的图像灰度化处理
摘要:本篇文章讲解图像灰度化处理的知识,结合OpenCV调用cv2.cvtColor()函数实现图像灰度操作,使用像素处理方法对图像进行灰度化处理. 本文分享自华为云社区<[Python图像处理 ...
- 跟我学Python图像处理丨何为图像的灰度非线性变换
摘要:本文主要讲解灰度线性变换,基础性知识希望对您有所帮助. 本文分享自华为云社区<[Python图像处理] 十六.图像的灰度非线性变换之对数变换.伽马变换>,作者:eastmount . ...
- Python图像处理丨认识图像锐化和边缘提取的4个算子
摘要:图像锐化和边缘提取技术可以消除图像中的噪声,提取图像信息中用来表征图像的一些变量,为图像识别提供基础. 本文分享自华为云社区<[Python图像处理] 十七.图像锐化与边缘检测之Rober ...
- 跟我学Python图像处理丨关于图像金字塔的图像向下取样和向上取样
摘要:本文讲述图像金字塔知识,了解专门用于图像向上采样和向下采样的pyrUp()和pyrDown()函数. 本文分享自华为云社区<[Python图像处理] 二十一.图像金字塔之图像向下取样和向上 ...
随机推荐
- 2.MongoDB Sharding Cluster分片集群
分片集群-规划 10个实例:38017-38026 (1)configserver:38018-38020 3台构成的复制集(1主两从,不支持arbiter)38018-38020(复制集名字conf ...
- 服务器常见问题排查(一)——cpu占用高、上下文频繁切换、频繁GC
一般而言cpu异常往往还是比较好定位的.原因包括业务逻辑问题(死循环).频繁gc以及上下文切换过多.而最常见的往往是业务逻辑(或者框架逻辑)导致的,可以使用jstack来分析对应的堆栈情况. 使用js ...
- 数据类型python
type()语句的用法 运行结果
- Element类型&Text类型&Comment类型
Element节点类型 nodetype=1 nodename=大写元素标签名 父节点可以说document 或element 其子节点可以是Element .Text .comment 访问元素 ...
- 记录jdk17相对于jdk8增加的一下主要语法糖和新特性
jdk17 发布已经好久了,作为java的长期支持版本,引入了许多有趣且实用的新特性.这些特性不仅提高了开发效率,还增强了语言的表现力和安全性.并且是SpringBoot 3.0以后版本的硬性要求,之 ...
- 《流畅的Python》 读书笔记 第8章_对象引用、可变性和垃圾回收
第8章_对象引用.可变性和垃圾回收 本章的主题是对象与对象名称之间的区别.名称不是对象,而是单独的东西 name = 'wuxianfeng' # name是对象名称 'wuxianfeng'是个st ...
- Netty源码学习5——服务端是如何读取数据的
系列文章目录和关于我 零丶引入 在前面<Netty源码学习4--服务端是处理新连接的&netty的reactor模式>的学习中,我们了解到服务端是如何处理新连接的,即注册Serve ...
- 第五周阅读笔记|人月神话————胸有成竹(Calling the Shot)
这个章节标题是胸有成竹,而要做到胸有成竹就必须在项目计划阶段我们对项目的预测和估算都需要很准确.因此整个章节的内容就是在讲估算,而估算就涉及到预测和估算模型,估算要做到准确必须通过前期多个历史项目和版 ...
- NestJs系列之使用Vite搭建项目
介绍 在使用nest创建项目时,默认使用webpack进行打包,有时候启动项目需要1-2分钟.所以希望采用vite进行快速启动项目进行开发. 本文主要使用NestJs.Vite和swc进行配置.文章实 ...
- 如何基于 k8s做私有化部署
公众号「架构成长指南」,专注于生产实践.云原生.分布式系统.大数据技术分享. 随着国内数字化转型的加速和国产化进程推动,软件系统的私有化部署已经成为非常热门的话题,因为私有化部署赋予了企业更大的灵活和 ...