题目

你有一棵 \(n\) 节点的树 ,回答 \(m\) 个询问,每次询问给你两个整数 \(l,r\) ,问存在多少个整数 \(k\) 使得从 \(l\) 沿着 \(l \to r\) 的简单路径走 \(k\) 步恰好到达 \(k\) 。

分析

考虑离线后按链记贡献

从 \(l\) 到 \(lca(l,r)\) 这段链上,可以计入贡献的点 \(x\) 满足 \(dep[l]-x=dep[x]\),称为一类贡献

即 \(dep[x]+x=dep[l]\), 因为已知 \(dep[l]\),所以直接开桶计算

从 \(lca(l,r)\) 到 \(r\) 这段链上,可以计入贡献的点 \(x\) 满足 \(dep[lca]+(x-dep[l]-dep[lca])=dep[x]\),称为二类贡献

即 \(dep[x]-x=2\times dep[lca]-dep[l]\),同样可以直接开另一个桶计算

因为 \(dfs\) 下来时桶记录的是根到当前点的信息,所以算贡献的时候要减去 \(lca\) 处的假贡献

\(lca\) 也可能成为需要贡献,所以算二类贡献的时候减去 \(father_{lca}\) 处的贡献

具体细节体现在代码

\(Code\)

#include<cstdio>
#include<vector>
using namespace std; const int N = 3e5 + 5;
int n, m, dep[N], d[2][2*N], fa[N], da[N], vis[N], l[N], r[N], lca[N], ans[N];
vector<int> e[N];
struct node1{int x, id;};
vector<node1> q1[N];
struct node2{int cs, ty, f, id;};
vector<node2> q2[N]; int find(int x){return fa[x] == x ? x : fa[x] = find(fa[x]);}
void dfs(int x, int dad)
{
da[x] = dad, dep[x] = dep[dad] + 1;
for(register int i = 0; i < e[x].size(); i++)
{
if (e[x][i] == dad) continue;
dfs(e[x][i], x);
}
}
void dfs1(int x, int dad)
{
vis[x] = 1;
for(register int i = 0; i < e[x].size(); i++)
{
if (e[x][i] == dad) continue;
dfs1(e[x][i], x), fa[e[x][i]] = x;
}
for(register int i = 0; i < q1[x].size(); i++)
if (vis[q1[x][i].x]) lca[q1[x][i].id] = find(q1[x][i].x);
}
void dfs2(int x, int dad)
{
++d[0][dep[x] + x], ++d[1][dep[x] - x + n];
for(register int i = 0; i < q2[x].size(); i++)
ans[q2[x][i].id] += q2[x][i].f * d[q2[x][i].ty][q2[x][i].cs];
for(register int i = 0; i < e[x].size(); i++)
{
if (e[x][i] == dad) continue;
dfs2(e[x][i], x);
}
--d[0][dep[x] + x], --d[1][dep[x] - x + n];
} int main()
{
freopen("query.in" , "r" , stdin);
freopen("query.out" , "w" , stdout);
scanf("%d%d" , &n , &m);
int x , y;
for(register int i = 1; i < n; i++)
{
scanf("%d%d" , &x , &y);
e[x].push_back(y), e[y].push_back(x);
}
for(register int i = 1; i <= m; i++)
{
scanf("%d%d" , &l[i], &r[i]);
q1[l[i]].push_back(node1{r[i], i});
q1[r[i]].push_back(node1{l[i], i});
}
for(register int i = 1; i <= n; i++) fa[i] = i;
dfs(1, 0), dfs1(1, 0);
for(register int i = 1; i <= m; i++)
{
q2[l[i]].push_back(node2{dep[l[i]], 0, 1, i});
q2[lca[i]].push_back(node2{dep[l[i]], 0, -1, i});
q2[r[i]].push_back(node2{2*dep[lca[i]]-dep[l[i]]+n, 1, 1, i});
if (lca[i] > 1)
q2[da[lca[i]]].push_back(node2{2*dep[lca[i]]-dep[l[i]]+n, 1, -1, i});
}
dfs2(1, 0);
for(register int i = 1; i <= m; i++) printf("%d\n" , ans[i]);
}

JZOJ 6904. 【2020.11.28提高组模拟】T3 树上询问(query)的更多相关文章

  1. 【2020.11.28提高组模拟】T1染色(color)

    [2020.11.28提高组模拟]T1染色(color) 题目 题目描述 给定 \(n\),你现在需要给整数 \(1\) 到 \(n\) 进行染色,使得对于所有的 \(1\leq i<j\leq ...

  2. 【2020.11.28提高组模拟】T2 序列(array)

    序列(array) 题目描述 ​给定一个长为 \(m\) 的序列 \(a\). 有一个长为 \(m\) 的序列 \(b\),需满足 \(0\leq b_i \leq n\),\(\sum_{i=1}^ ...

  3. 【2020.11.30提高组模拟】剪辣椒(chilli)

    剪辣椒(chilli) 题目描述 在花园里劳累了一上午之后,你决定用自己种的干辣椒奖励自己. 你有n个辣椒,这些辣椒用n-1条绳子连接在一起,任意两个辣椒通过用若干个绳子相连,即形成一棵树. 你决定分 ...

  4. 【2020.11.30提高组模拟】删边(delete)

    删边(delete) 题目 题目描述 给你一棵n个结点的树,每个结点有一个权值,删除一条边的费用为该边连接的两个子树中结点权值最大值之和.现要删除树中的所有边,删除边的顺序可以任意设定,请计算出所有方 ...

  5. 11.5NOIP2018提高组模拟题

    书信(letter) Description 有 n 个小朋友, 编号为 1 到 n, 他们每人写了一封信, 放到了一个信箱里, 接下来每个人从中抽取一封书信. 显然, 这样一共有 n!种拿到书信的情 ...

  6. 【2020.12.03提高组模拟】A组反思

    估计:40+10+0+0=50 实际:40+10+0+0=50 rank40 T1 赛时看到\(n,m\leq9\),我当机立断决定打表,暴力打了几个点之后发现在\(n\ne m\)且\(k\ne0\ ...

  7. 【2020.12.01提高组模拟】卡特兰数(catalan)

    题目 题目描述 今天,接触信息学不久的小\(A\)刚刚学习了卡特兰数. 卡特兰数的一个经典定义是,将\(n\)个数依次入栈,合法的出栈序列个数. 小\(A\)觉得这样的情况太平凡了.于是,他给出了\( ...

  8. 【2020.12.01提高组模拟】A组反思

    105,rk45 T1 赛时一开始先打了\(m=0\)的情况,也就是普通的卡特兰数,然后打了暴力,样例过了,把样例改改就不行了,原因没有保证是枚举的是合法的出栈序列 得分:\(WA\&TLE1 ...

  9. 求hack or 证明(【JZOJ 4923】 【NOIP2017提高组模拟12.17】巧克力狂欢)

    前言 本人在此题有一种不是题解的方法,但无法证明也找不到反例. 如果各位大神有反例或证明请发至 邮箱:qq1350742779@163.com Description Alice和Bob有一棵树(无根 ...

  10. 【2020.12.02提高组模拟】A组反思

    55,rk47 T1 赛时先想了\(trie\),想到不一定是前缀,然后就放弃转为打暴力 得分:\(RE22\) 正解是只用判断\(i\)与\(i+1\)的关系,那么只有两种情况,判断一下然后\(dp ...

随机推荐

  1. SSH(二)框架配置文件

    在引入了宽假所需要的jar包后,引入相应配置文件. 一.Struts2的配置文件: 1.Struts2的黑心过滤器,在web.xml中引入: <!-- struts2框架的核心过滤器  clas ...

  2. Linux下用rm误删除文件的三种恢复方法

    Linux下用rm误删除文件的三种恢复方法 对于rm,很多人都有惨痛的教训.我也遇到一次,一下午写的程序就被rm掉了,幸好只是一个文件,第二天很快又重新写了一遍.但是很多人可能就不像我这么幸运了.本文 ...

  3. 打印菱形-java

    public class WeekendDemo01 { /** 打印菱形 * * * *** * ***** * *** * * */ public static void main(String[ ...

  4. Android ViewPager2 + Fragment + BottomNavigationView 联动

    Android ViewPager2 + Fragment + BottomNavigationView 联动 本篇主要介绍一下 ViewPager2 + Fragment + BottomNavig ...

  5. 【每日一题】【map存值】2022年2月25日-NC112 进制转换

    描述给定一个十进制数 M ,以及需要转换的进制数 N .将十进制数 M 转化为 N 进制数. 当 N 大于 10 以后, 应在结果中使用大写字母表示大于 10 的一位,如 'A' 表示此位为 10 , ...

  6. 【算法总结】【队列均LinkedList】栈和队列、双端队列的使用及案例

    1.栈 初始化:Stack<E> stack = new Stack<>(); 出栈:stack.pop() 或 stack.remove(stack.size() - 1) ...

  7. 【实时数仓】Day04-DWS层业务:DWS设计、访客宽表、商品主题宽表、流合并、地区主题表、FlinkSQL、关键词主题表、分词

    一.DWS层与DWM设计 1.思路 之前已经进行分流 但只需要一些指标进行实时计算,将这些指标以主题宽表的形式输出 2.需求 访客.商品.地区.关键词四层的需求(可视化大屏展示.多维分析) 3.DWS ...

  8. C#不提升自己程序的权限实现操作注册表

    1. 绪论 当我们编写了自己的C#程序,有程序自定义的文件类型时,通常希望它满足以下需求: 双击自定义文件打开自定义程序 自定义文件有着自己的图标 此时,在网上检索可以发现,大多数回答是使用Micro ...

  9. 【Java】二分查找标准代码

    太菜了..写不出正确的... 干脆放一个标准代码,之后参考 boolean BinarySearch(int[] m){ int l=0,r=m.length-1;//减1相当于数组两头(lr都能指到 ...

  10. Django框架路由层-无名有名分组-无名有名分组反向解析

    目录 一:路由层 1.路由匹配(错误演示) 2.路由匹配错误原因 3.路由匹配(解决方式1) 4.settings配置文件控制自动添加斜杠匹配 5.url方法第一个参数是正则表达式(正规使用url) ...