洛咕

题意:

  • 给定 \(n\) 和一个长度为 \(n\) 的数组 \(a\),求一个最长的区间 \(\left[l,r\right]\),使得存在 \(m\geq 2\) 和 \(k\),对于所有 \(l\leq i\leq r,a_i\equiv k\pmod{m}\)(即区间内所有数对 \(m\) 取模余数相等),输出最长区间长度(区间长度定义为 \(r-l+1\))。

分析:

  • 最大公约数也具有区间可并性。因此构建ST表,设\(f[i][j]\)表示\(i\) ~ \(i+\)\(2^j\)\(-1\)这段区间的最大公约数,预处理和维护都是模板,然后枚举长度可以用二分答案,时间复杂度约为\(nlog_2\)\(nlog_2\)\(n\).
#include<bits/stdc++.h>
#define ll long long
#define rg register
#define rep(i,j,k) for(int i=j;i<=k;++i)
using namespace std;
inline ll read(){
char ch=getchar();ll x=0,f=1;
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while('0'<=ch&&ch<='9'){x=1ll*x*10+ch-'0';ch=getchar();}
return x*f;
}
const int mod=100003;
const int N=2e5+5;
ll n,a[N],b[N],f[N][21],lg[N];
ll gcd(ll x,ll y){
if(!y)return x;
return gcd(y,x%y);
}
ll query(ll l,ll r){
ll x=lg[r-l+1];
return gcd(f[l][x],f[r-(1<<x)+1][x]);
}
bool check(ll mid){
for(int i=1;i+mid-1<=n;++i){
if(query(i,i+mid-1)>=2)return 1;
}
return 0;
}
int main(){
int T=read();
while(T--){
n=read();
for(int i=1;i<=n;++i)a[i]=read();
n--;
for(int i=1;i<=n;++i)b[i]=f[i][0]=abs(a[i]-a[i+1]);
for(int j=1;j<=20;++j){
for(int i=1;i+(1<<j)-1<=n;++i){
f[i][j]=gcd(f[i][j-1],f[i+(1<<(j-1))][j-1]);
}
}
lg[0]=-1;for(int i=1;i<=n;++i)lg[i]=lg[i>>1]+1;
int l=1,r=n,mid,ans=1;
while(l<=r){
mid=(l+r)>>1;
if(check(mid))l=mid+1,ans=mid+1;
else r=mid-1;
}
cout<<l<<endl;
}
return 0;
}

CF1548B Integers Have Friends的更多相关文章

  1. 2021record

    2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fall ...

  2. [LeetCode] Sum of Two Integers 两数之和

    Calculate the sum of two integers a and b, but you are not allowed to use the operator + and -. Exam ...

  3. [LeetCode] Divide Two Integers 两数相除

    Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...

  4. HDU 1796How many integers can you find(容斥原理)

    How many integers can you find Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%I64d ...

  5. Leetcode Divide Two Integers

    Divide two integers without using multiplication, division and mod operator. 不用乘.除.求余操作,返回两整数相除的结果,结 ...

  6. LeetCode Sum of Two Integers

    原题链接在这里:https://leetcode.com/problems/sum-of-two-integers/ 题目: Calculate the sum of two integers a a ...

  7. Nim Game,Reverse String,Sum of Two Integers

    下面是今天写的几道题: 292. Nim Game You are playing the following Nim Game with your friend: There is a heap o ...

  8. POJ 3468 A Simple Problem with Integers(线段树 成段增减+区间求和)

    A Simple Problem with Integers [题目链接]A Simple Problem with Integers [题目类型]线段树 成段增减+区间求和 &题解: 线段树 ...

  9. LeetCode 371. Sum of Two Integers

    Calculate the sum of two integers a and b, but you are not allowed to use the operator + and -. Exam ...

  10. leetcode-【中等题】Divide Two Integers

    题目 Divide two integers without using multiplication, division and mod operator. If it is overflow, r ...

随机推荐

  1. sqlserver update join

    update a set a.UserAgent = b.UserAgent from InfoVisitDetails a inner join InfoVisitDetails b on a.IP ...

  2. 苹果iPhone 日历查询功能异常

    2022年底苹果发布了IOS16.2版本系统,此时间段内所有升级的用户都将会出现日历查询功能失效,字符错乱等诸多问题. 与客服沟通后告知,日历记录内容查询是没有时间限制的,可以无限期查询全部内容,于是 ...

  3. mybatis:自定义映射关系resultMap

    创建表t_emp 定义实体类 package org.example.entity; public class Emp { private Integer empId; private String ...

  4. 关于xtr的一些基础

    Q&A 如何找到QSEQ方式的xtt呢? 我们可以去版本的代码中寻找,具体位置在:(modem_proc/rf/rftarget_denali/mtp/xtt/etc/QSEQ/) 在QSEQ ...

  5. Word14 互联网络发展状况统计报告office真题

    1.课程的讲解之前,先来对题目进行分析,首先需要在考生文件夹下,将Wrod素材.docx文件另存为Word.docx,后续操作均基于此文件,否则不得分. 2.这一步非常的简单,打开下载素材文件,在[文 ...

  6. 2021.09 ccf csp 第四题 收集卡牌

    2021.09 ccf csp 第四题 收集卡牌 思路 这题如果直接计算,因为不同的分类种数太多,枚举所有的分类情况是一个几乎不可能的复杂任务. 但不同摸牌次数,不同已摸出牌种类的子问题的答案之间,具 ...

  7. linux升级系统内核

    1. 查看老版本系统内核 2. 升级内核 rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org rpm -Uvh http://www. ...

  8. nodejs web学习

    命令行 和python一样,出奇的简单 npm i serve -g serve -s softwares 如果当前目录,就直接 serve express /** * 服务器代码 * 启动方式: * ...

  9. Easyui 表格列数据合并!

    //datagrid调用列子 onLoadSuccess: function (data) { $(".datagrid-header-row").css("text-a ...

  10. Linux系统Shell脚本第五章:shell数组、正则表达式及文件三剑客之AWK

    目录 一.shell数组 1.数组分类 2.定义数组方法 二.正则表达式 1.元字符 2.表示次数 3.位置锚定 4.分组 5.扩展正则表达式 三.文本三剑客之AWK 1.awk 2.使用格式 3.处 ...