假设我们要筛一个东西叫做 \(f\) .

\[D(n)=\left\{n,\left\lfloor\dfrac n2\right\rfloor,\left\lfloor\dfrac n3\right\rfloor,\left\lfloor\dfrac n4\right\rfloor,\cdots\right\}
\]

那么我们知道杜教筛在计算 \(f(n)\) 时实际上是对 \(D(n)\) 中的所有数都计算了一遍 \(f(n)\) 并存入了缓存 .

然而我们整除分块的过程就是求 \(D(n)\) 里面这些东西,所以说实际上只筛了一次 \(f\),其他全部在查表 .

于是复杂度是 \(O(n^{2/3})\) .

Reference: https://mivik.blog.luogu.org/mivik-round-4-solution-dream

整除分块套杜教筛为什么是 O(n^2/3) 的的更多相关文章

  1. Wannafly Camp 2020 Day 3D 求和 - 莫比乌斯反演,整除分块,STL,杜教筛

    杜教筛求 \(\phi(n)\), \[ S(n)=n(n+1)/2-\sum_{d=2}^n S(\frac{n}{d}) \] 答案为 \[ \sum_{d=1}^n \phi(d) h(\fra ...

  2. 2019CCPC网络赛 HD6707——杜教筛

    题意 求 $f(n,a,b)=\sum_{i=1}^n \sum_{j=1}^i gcd(i^a-j^a,i^b-j^b)[gcd(i,j)=1]\%(10^9+7)$,$1 \le n,a,b \l ...

  3. 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)

    [51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...

  4. 【51nod】1238 最小公倍数之和 V3 杜教筛

    [题意]给定n,求Σi=1~nΣj=1~n lcm(i,j),n<=10^10. [算法]杜教筛 [题解]就因为写了这个非常规写法,我折腾了3天…… $$ans=\sum_{i=1}^{n}\s ...

  5. [CSP-S模拟测试]:123567(莫比乌斯函数+杜教筛+数论分块)

    题目传送门(内部题92) 输入格式 一个整数$n$. 输出格式 一个答案$ans$. 样例 样例输入: 样例输出: 数据范围与提示 对于$20\%$的数据,$n\leqslant 10^6$. 对于$ ...

  6. LOJ# 572. 「LibreOJ Round #11」Misaka Network 与求和(min25筛,杜教筛,莫比乌斯反演)

    题意 求 \[ \sum_{i = 1}^{n} \sum_{i = 1}^{n} f(\gcd(i, j))^k \pmod {2^{32}} \] 其中 \(f(x)\) 为 \(x\) 的次大质 ...

  7. 【知识总结】线性筛_杜教筛_Min25筛

    首先感谢又强又嘴又可爱脸还筋道的国家集训队(Upd: WC2019 进候选队,CTS2019 不幸 rk6 退队)神仙瓜 ( jumpmelon ) 给我讲解这三种筛法~~ 由于博主的鸽子属性,这篇博 ...

  8. LOJ572. 「LibreOJ Round #11」Misaka Network 与求和 [莫比乌斯反演,杜教筛,min_25筛]

    传送门 思路 (以下令\(F(n)=f(n)^k\)) 首先肯定要莫比乌斯反演,那么可以推出: \[ ans=\sum_{T=1}^n \lfloor\frac n T\rfloor^2\sum_{d ...

  9. [51Nod 1237] 最大公约数之和 (杜教筛+莫比乌斯反演)

    题目描述 求∑i=1n∑j=1n(i,j) mod (1e9+7)n<=1010\sum_{i=1}^n\sum_{j=1}^n(i,j)~mod~(1e9+7)\\n<=10^{10}i ...

随机推荐

  1. 解构HE2E中的Kubernetes技术应用

    摘要:我们从Kubernetes技术应用的角度解构华为云DevCloud HE2E DevOps实践. 本文分享自华为云社区<解构HE2E中的Kubernetes技术应用>,作者: 敏捷小 ...

  2. 无线:WPA

    WPA全名为Wi-Fi Protected Access,有WPA和WPA2两个标准,是一种保护无线电脑网络(Wi-Fi)安全的系统,它是应研究者在前一代的系统有线等效加密(WEP)中找到的几个严重的 ...

  3. 以圆类 Circle 为基础设计球类 Sphere

    学习内容:实验二以圆类 Circle 为基础设计球类 Sphere 代码示例: import java.util.Scanner; class Point{ private double x; pri ...

  4. Es图形化软件使用之ElasticSearch-head、Kibana,Elasticsearch之-倒排索引操作、映射管理、文档增删改查

    今日内容概要 ElasticSearch之-ElasticSearch-head ElasticSearch之-安装Kibana Elasticsearch之-倒排索引 Elasticsearch之- ...

  5. 【AC自动机】背单词

    题意: 0 s v:添加价值为v的字符串s 1 t:查询t中含的s的权值和.(不停位置算多次) 思路: 在线AC自动机. 同学用过一个妙妙子的分块算法. 这里用二进制分组:通常用作把在线数据结构问题转 ...

  6. 直观比较 popcount 的效率差异

    问题 求 \(\sum\limits_{i=1}^{3\times 10^8} popcount(i)\) . 仅考虑在暴力做法下的效率. 枚举位 __builtin_popcount #includ ...

  7. 互联网公司目标管理OKR和绩效考核的误区

    最近看了一篇关于「谷歌放弃OKR,转向全新的GRAD系统」的文章,我转到了研发效能DevOps的微信群里,结果引起了大家热烈的讨论,正好我们也在使用 OKR,所以也来谈谈我的理解以及我们应用起来的实际 ...

  8. 文件输入输出处理-File

    大佬的理解-><IO流和File> 1.File类 File类是IO包中唯一代表磁盘文件本身的对象,File类定义了一些与平台无关的方法来操作文件.通过调用File类提供的各种方法, ...

  9. 使用Java编写一个日期时间封装类

    package base; import java.util.GregorianCalendar; import java.util.StringTokenizer; import java.util ...

  10. c# 国内外ORM 框架 dapper efcore sqlsugar freesql hisql sqlserver数据常规插入测试性能对比

    c# 国内外ORM 框架 dapper efcore sqlsugar freesql hisql sqlserver数据常规插入测试性能对比对比 在6.22 号发布了 c# sqlsugar,his ...