抽屉原理:   

形式一:设把n+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an分别表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于2。
 
形式二:设把nm+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于m+1。
 
形式三:设把n个元素分为k个集合A1,A2,…,Ak,用a1,a2,…,ak表示这k个集合里相应的元素个数,需要证明至少存在某个ai大于或等于[n/k]。
  
题意:n个不同的元素,任意一个或者多个相加为n的倍数。找到这些元素。第一个输出元素的个数,后面分别输出这些元素。(多种情况输出一组)
 
  分析:被n求模的余数为 0,1,2,3....n-1    有n个元素,任意几个数的和为n的倍数,那么这些和假设为 a1, a2 ,a3 ..... am 那么m一定大于n  
     把余数当做抽屉,一定会有至少一个抽屉有两个元素!就是抽屉原理的形式一。
 
#include<cstdio>
#include<cstring> const int maxn = 1e5 + ;
int num[maxn], hash[maxn], sum[maxn];
int n; int main()
{
while (scanf("%d", &n) != EOF){
memset(hash, , sizeof(hash));
for (int i = ; i <= n; ++i)
scanf("%d", &num[i]); int t = , s = ;
for (int i = ; i <= n; ++i)
{
sum[i] = (sum[i - ] + num[i]) % n;
if (sum[i] == ){
t = i;
break;
}
if (hash[sum[i]] > ){
s = hash[sum[i]] + ;
t = i;
break;
}
hash[sum[i]] = i;
}
printf("%d\n", t - s + );
for (int i = s; i <= t; ++i)
printf("%d\n", num[i]);
}
}

Find a multiple POJ - 2356 (抽屉原理)的更多相关文章

  1. poj 2356 抽屉原理

    基本原理: n+1个鸽子放到n个笼子里,至少有一个笼子里有两只及其以上的鸽子.若有n个笼子,kn+1个鸽子,至少有一个笼子里面有k+1个鸽子: 题意:给定N个数,挑出一些数,他们和和是n的整数倍: 分 ...

  2. Find a multiple POJ - 2356 【鸽巢原理应用】

    Problem DescriptionThe input contains N natural (i.e. positive integer) numbers ( N <= 10000 ). E ...

  3. Find a multiple POJ - 2356 容斥原理(鸠巢原理)

    1 /* 2 这道题用到了鸠巢原理又名容斥原理,我的参考链接:https://blog.csdn.net/guoyangfan_/article/details/102559097 3 4 题意: 5 ...

  4. Find a multiple POJ - 2356

    The input contains N natural (i.e. positive integer) numbers ( N <= 10000 ). Each of that numbers ...

  5. Mathematics:Find a multiple(POJ 2356)

    找组合 题目大意:给你N个自然数,请你求出若干个数的组合的和为N的整数倍的数 经典鸽巢原理题目,鸽巢原理的意思是,有N个物品,放在N-1个集合中,则一定存在一个集合有2个元素或以上. 这一题是说有找出 ...

  6. poj 2356鸽笼原理水题

    关于鸽笼原理的知识看我写的另一篇博客 http://blog.csdn.net/u011026968/article/details/11564841 (需要说明的是,我写的代码在有答案时就输出结果了 ...

  7. POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7192   Accepted: 3138   ...

  8. POJ 2356 Find a multiple 抽屉原理

    从POJ 2356来体会抽屉原理的妙用= =! 题意: 给你一个n,然后给你n个数,让你输出一个数或者多个数,让这些数的和能够组成n: 先输出一个数,代表有多少个数的和,然后再输出这些数: 题解: 首 ...

  9. poj 2356 (抽屉原理)

    题目链接:http://poj.org/problem?id=2356 题目大意:给你n个数,要你从n个数选出若干个数,要求这若干个数的和是n的倍数,输出选择数的个数,以及相应的数. 解题思路: 以下 ...

随机推荐

  1. 2017ACM/ICPC亚洲区沈阳站(部分解题报告)

    HDU 6225 Little Boxes 题意 计算四个整数的和 解题思路 使用Java大整数 import java.math.BigInteger; import java.util.Scann ...

  2. [AHOI2005] 航线规划

    Description 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系--一个巨大的由千百万星球构成的Samuel星系. 星际空间站的Samuel ...

  3. Mybatis之分页插件pagehelper的简单使用

    最近从家里回来之后一直在想着减肥的事情,一个月都没更新博客了,今天下午没睡午觉就想着把mybatis的分页插件了解一下,由于上个月重新恢复了系统,之前创建的项目都没了,又重新创建了一个项目. 一.创建 ...

  4. 浅谈c#的三个高级参数ref out 和Params

    c#的三个高级参数ref out 和Params 前言:在我们学习c#基础的时候,我们会学习到c#的三个高级的参数,分别是out .ref 和Params,在这里我们来分别的讲解一下,在这里的我们先不 ...

  5. 基于IDEA的bs三层架构

    1.在大学的老师讲课中,可能会用到myeclipse或者eclipse来进行编译运行.其中的缺点就是要自行去下载开发所需要的一些jar包,要考虑都版本的不同造成的影响,且ORACLE和MYSQL的链接 ...

  6. 【协议】5、gossip 协议

    Gossip是一种去中心化.容错并保证最终一致性的协议. Background:分布式环境 Gossip是为了解决分布式遇到的问题而设计的.由于服务和数据分布在不同的机器上,节点之间的每次交互都伴随着 ...

  7. 【IDEA&&Eclipse】2、从Eclipse转移到IntelliJ IDEA一点心得

    本人使用IntelliJ IDEA其实并不太久,用了这段时间以后,觉得的确很是好用.刚刚从Eclipse转过来的很多人开始可能不适应,我就把使用过程中的一些经验和常用功能分享下,当然在看这篇之前推荐你 ...

  8. Java使用for循环输出菱形

    /** * This program would print out a diamond * @param row the row of diamond * @version 2018-7-23 * ...

  9. EditPlus配置

    1.设置语法和字符 2.调用浏览器 3.设置字符编码

  10. css清楚浮动的class

    .clearfix:after { display: table; visibility: hidden; clear: both; height:; content: ''; } 直接在浮动元素的父 ...