[笔记]后缀数组SA
参考资料
这次是真抄的:
1.后缀数组详解
2.后缀数组-学习笔记
3.后缀数组——处理字符串的有力工具
定义
\(SA\)排名为\(i\)的后缀的位置
\(rk\)位置为\(i\)的后缀的排名
\(tp\)第二关键字的排名为\(i\)的后缀的位置,还被用作\(rank\)的暂存
\(tax\)每个排名对应的后缀数量
后缀数组就是为了求出\(sa\)和\(rk\)
性质
\(rk[sa[i]]=i\) \(sa[rk[i]]=i\)
$LCP(x,y) $:字符串x与字符串y的最长公共前缀,在这里指x号后缀与与y号后缀的最长公共前缀
\(height[i]=lcp ( sa[i],sa[i - 1] )\),即排名为\(i\)的后缀与排名为\(i−1\)的后缀的最长公共前缀
\(H[i]:height[rak[i]]\),即\(i\)号后缀与它前一名的后缀的最长公共前缀
\(H[i] \geqslant H[i - 1] - 1\) 证明
$LCP(i,j)=LCP(j,i) $
\(LCP(i,i)=len(sa[i])=n-sa[i]+1\)
\(LCP(i,k)=min\left\{height[j] \right\}(i+1<=j<=k)\)
\(S\)不同的子串个数\(\dfrac{n(n+1)}{2} -\sum_{i=1}^nheight[i]\)
代码
#include <iostream>
#include <cstdio>
#include <string>
#define R register int
using namespace std;
const int N = 1000005;
string s;
/* sa[i]:排名为i的后缀的位置
rak[i]:从第i个位置开始的后缀的排名,下文为了叙述方便,把从第i个位置开始的后缀简称为后缀i
tp[i]:基数排序的第二关键字,意义与sa一样,即第二关键字排名为i的后缀的位置
tax[i]:i号元素出现了多少次。辅助基数排序
s:字符串,s[i]表示字符串中第i个字符串*/
int n, m, sa[N], rk[N], tp[N], c[N];
void _sort() {
for(R i = 1; i <= m; ++i) c[i] = 0;
for(R i = 1; i <= n; ++i) c[rk[i]]++;
for(R i = 1; i <= m; ++i) c[i] += c[i - 1];
for(R i = n; i >= 1; --i) sa[c[rk[tp[i]]]--] = tp[i];
}
void SA() {
m = 150;
for(R i = 1; i <= n; ++i) rk[i] = s[i - 1], tp[i] = i;
_sort();
for(R w = 1, p = 0; p < n && w <= n; m = p, w <<= 1) {
p = 0;
for(R i = 1; i <= w; ++i) tp[++p] = n - w + i;
for(R i = 1; i <= n; ++i) if(sa[i] > w) tp[++p] = sa[i] - w;
_sort();
swap(tp, rk);
rk[sa[1]] = p = 1;
for(R i = 2; i <= n; ++i)
rk[sa[i]] = (tp[sa[i - 1]] == tp[sa[i]] && tp[sa[i - 1] + w] == tp[sa[i] + w])
? p : ++p;
}
}
/*i号后缀:从i开始的后缀
lcp(x,y):字符串x与字符串y的最长公共前缀,在这里指x号后缀与与y号后缀的最长公共前缀
height[i]:lcp(sa[i],sa[i?1]),即排名为i的后缀与排名为i?1的后缀的最长公共前缀
H[i]:height[rak[i]],即i号后缀与它前一名的后缀的最长公共前缀*/
int Height[N];
void Get() {
int j, k = 0;
for(int i = 1; i <= n; i++) {
if(k) k--;
j = sa[rk[i] - 1];
while(s[i + k - 1] == s[j + k - 1]) ++k;
Height[rk[i]] = k;
}
}
int main()
{
cin >> s;
n = s.length();
SA();
for(R i = 1; i <= n; ++i) printf("%d ", sa[i]);
cout << endl;
Get();
return 0;
}
Problem
\(ans=\dfrac{n(n+1)}{2} -\sum height[i]\)
Luogu
P3809 【模板】后缀排序
P4070 [SDOI2016]生成魔咒
P3311 [SDOI2014]数数
P4051 [JSOI2007]字符加密
P2463 [SDOI2008]Sandy的卡片
P2408 不同子串个数
[笔记]后缀数组SA的更多相关文章
- 后缀数组SA学习笔记
什么是后缀数组 后缀数组\(sa[i]\)表示字符串中字典序排名为\(i\)的后缀位置 \(rk[i]\)表示字符串中第\(i\)个后缀的字典序排名 举个例子: ababa a b a b a rk: ...
- 后缀数组(SA)总结
后缀数组(SA)总结 这个东西鸽了好久了,今天补一下 概念 后缀数组\(SA\)是什么东西? 它是记录一个字符串每个后缀的字典序的数组 \(sa[i]\):表示排名为\(i\)的后缀是哪一个. \(r ...
- 后缀数组SA入门(史上最晦涩难懂的讲解)
参考资料:victorique的博客(有一点锅无伤大雅,记得看评论区),$wzz$ 课件(快去$ftp$%%%),$oi-wiki$以及某个人的帮助(万分感谢!) 首先还是要说一句:我不知道为什么我这 ...
- bzoj3796(后缀数组)(SA四连)
bzoj3796Mushroom追妹纸 题目描述 Mushroom最近看上了一个漂亮妹纸.他选择一种非常经典的手段来表达自己的心意——写情书.考虑到自己的表达能力,Mushroom决定不手写情书.他从 ...
- 【字符串】后缀数组SA
后缀数组 概念 实际上就是将一个字符串的所有后缀按照字典序排序 得到了两个数组 \(sa[i]\) 和 \(rk[i]\),其中 \(sa[i]\) 表示排名为 i 的后缀,\(rk[i]\) 表示后 ...
- 浅谈后缀数组SA
这篇博客不打算讲多么详细,网上关于后缀数组的blog比我讲的好多了,这一篇博客我是为自己加深印象写的. 给你们分享了那么多,容我自私一回吧~ 参考资料:这位dalao的blog 一.关于求Suffix ...
- 后缀数组SA
复杂度:O(nlogn) 注:从0到n-1 const int maxn=1e5; char s[maxn]; int sa[maxn],Rank[maxn],height[maxn],rmq[max ...
- 洛谷2408不同字串个数/SPOJ 694/705 (后缀数组SA)
真是一个三倍经验好题啊. 我们来观察这个题目,首先如果直接整体计算,怕是不太好计算. 首先,我们可以将每个子串都看成一个后缀的的前缀.那我们就可以考虑一个一个后缀来计算了. 为了方便起见,我们选择按照 ...
- 洛谷4248 AHOI2013差异 (后缀数组SA+单调栈)
补博客! 首先我们观察题目中给的那个求\(ans\)的方法,其实前两项没什么用处,直接\(for\)一遍就求得了 for (int i=1;i<=n;i++) ans=ans+i*(n-1); ...
随机推荐
- [NOI 2017]游戏
Description 题库链接 小 L 计划进行 \(n\) 场游戏,每场游戏使用一张地图,小 L 会选择一辆车在该地图上完成游戏. 小 L 的赛车有三辆,分别用大写字母 A.B.C 表示.地图一共 ...
- [转]JS实现千分位
本文转自:https://www.cnblogs.com/lvmylife/p/8287247.html 方法一:正则实现 function format (num) { var reg=/\d{1, ...
- Liunx-常用命令杂烩(5)
快捷键 ctrl+alt 显示鼠标 ctrl+alt+tab+F1~F6 :进入字符终端界面tty1~tty6,例如 ctrl+alt+tab+F7 :退出字符终端界面 简单命令相关 w ...
- Effective Java通俗理解(上)
这篇博客是Java经典书籍<Effective Java(第二版)>的读书笔记,此书共有78条关于编写高质量Java代码的建议,我会试着逐一对其进行更为通俗易懂地讲解,故此篇博客的更新大约 ...
- NIO 学习笔记一
Java NIO 由以下几个核心部分组成: ChannelsBuffersSelectors Channel 和 Buffer 基本上,所有的 IO 在NIO 中都从一个Channel 开始.Chan ...
- linux shell脚本之-变量极速入门与进阶(2)
1,$$:显示当前的进程id号 ghostwu@dev:~/linux/shell/how_to_use_var$ cat show_pid.sh #!/bin/bash echo $$ ghostw ...
- 使用CSS如何解决inline-block元素的空白间距
早上在博客中有人提了这样一个问题:“li元素inline-block横向排列,出现了未知间隙”,我相信大家在写页面的时候都遇到过这样的情况吧. 我一般遇到这情况都会把li浮动起来,这样就没有间隙.但是 ...
- 【代码笔记】Web-ionic tab(选项卡)
一,效果图. 二,代码. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...
- JS性能优化 之 事件委托
面试中2次被问到过这个知识点,实际开发中,应用事件委托也比较常见.JS中事件委托的实现主要依赖于 事件冒泡 .那什么是事件冒泡?就是事件从最深的节点开始,然后逐步向上传播事件,举个例子:页面上有这么一 ...
- [20180627]测试bbed是否支持管道命令.txt
[20180627]测试bbed是否支持管道命令.txt --//测试bbed是否支持管道命令.txt 1.环境:SCOTT@test01p> @ ver1PORT_STRING ...