(2018全国联赛解答最后一题)在平面直角坐标系$xOy$中,设$AB$是抛物线$y^2=4x$的过点$F(1,0)$的弦,$\Delta{AOB}$的外接圆交抛物线于点$P$(不同于点$A,O,B$),若$PF$平分$\angle{APB}$,求$|PF|$所有可能值。

解答:不妨设$AO:y=kx(k>0)$,联立方程$y=kx,y^2=4x$得$A(\dfrac{4}{k^2},\dfrac{4}{k})$

$AB:y=\dfrac{\frac{4}{k}}{\frac{4}{k^2}-1}(x-1);$联立方程:$y=\dfrac{\frac{4}{k}}{\frac{4}{k^2}-1}(x-1),y^2=4x$

得$ky^2+(k^2-4)y-4k=0$得$y_B=-k,\therefore B(\dfrac{k^2}{4},-k)$

由于OBAP四点共圆,故$k_{BP}=-k$(注:此性质见MT【125】)即:$\dfrac{y_p+k}{x_P-\frac{k^2}{4}}=\dfrac{y_p+k}{\frac{y_P}{4}-\frac{k^2}{4}}=-k$

得$P(\dfrac{(k^2-4)^2}{4k^2},\dfrac{k^2-4}{k})$,

由题意$PF$平分$\angle{APB}$故$\dfrac{AP}{BP}=\dfrac{AF}{BF}=\dfrac{y_A}{y_B}$代入坐标

得$$\dfrac{\left(\dfrac{(k^2-4)^2}{4k^2}-\dfrac{4}{k^2}\right)^2+\left(\dfrac{k^2-4}{k}-\dfrac{4}{k}\right)^2}{\left(\dfrac{(k^2-4)^2}{4k^2}-\dfrac{k^2}{4}\right)^2+\left(\dfrac{k^2-4}{k}+k\right)^2}=\left(\dfrac{\frac{4}{k}}{-k}\right)^2$$

记$t=k^2>0$化简得:$t^3(t-8)^2(16+t)=32^2(t-2)^2(t+1)$即$(t-4)(t+4)(t^2-12t-16)(t^2+12t-16)=0$,故$t_1=4,t_2=2(\sqrt{13}-3)$,

当$t=4$时$P(0,0)$舍去

当$t=2(\sqrt{13}-3)$时,$|PF|=x_P+1=\sqrt{13}-1$

MT【210】四点共圆+角平分线的更多相关文章

  1. MT【125】四点共圆

    (2017湖南省高中数学竞赛16题) \(AB\)是椭圆\(mx^2+ny^2=1(m>0,n>0,m\ne n)\)的斜率为 1 的弦.\(AB\)的垂直平分线与椭圆交于两点\(CD\) ...

  2. MT【306】圆与椭圆公切线段

    已知椭圆方程$\dfrac{x^2}{4}+\dfrac{y^2}{3}=1$,圆方程$x^2+y^2=r^2,(3<r^2<4)$,若直线$l$与椭圆和圆分别切于点$P,Q$求$|PQ| ...

  3. Pick定理、欧拉公式和圆的反演

    Pick定理.欧拉公式和圆的反演 Tags:高级算法 Pick定理 内容 定点都是整点的多边形,内部整点数为\(innod\),边界整点数\(ednod\),\(S=innod+\frac{ednod ...

  4. hihoCoder挑战赛14 A,B,C题解

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud 题目1 : 不等式 时间限制:10000ms 单点时限:1000ms 内存限制:2 ...

  5. poj1981 Circle and Points 单位圆覆盖问题

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Circle and Points Time Limit: 5000MS   Me ...

  6. poj2187 Beauty Contest(旋转卡壳)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Beauty Contest Time Limit: 3000MS   Memor ...

  7. poj1127 Jack Straws(线段相交+并查集)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Jack Straws Time Limit: 1000MS   Memory L ...

  8. [ZJOI2018]保镖

    [ZJOI2018]保镖 Tags:题解 题意 链接 初始在平面上有一些点,九条可怜随机出现在一个矩形内的任意一点.若九条可怜出现在\(O\)点,则平面上所有的点都从\(P_i\)移动到\(P'_i\ ...

  9. 洛谷P4502 [ZJOI2018]保镖(计算几何+三维凸包)

    题面 传送门 题解 我对计蒜几盒一无所知 顺便\(xzy\)巨巨好强 前置芝士 三维凸包 啥?你不会三维凸包?快去把板子写了->这里 欧拉公式 \[V-E+F=2\] \(V:vertex\)顶 ...

随机推荐

  1. 在WPF中使用FontAwesome图标字体

    原文:在WPF中使用FontAwesome图标字体 版权声明:原创内容转载必须注明出处,否则追究相关责任. https://blog.csdn.net/qq_36663276/article/deta ...

  2. Ionic buid android下的此工程不是一个android项目问题

    今天编译Ionic项目的时候报如下错误,甚是费解,之前一直都是好的 首先去检查了,相关JavaHome的环境变量,确定是好的,java -version 命令没有问题. 经查阅网上的解决方法,思路大都 ...

  3. C# 调用微信接口上传素材和发送图文消息

    using Common;using Newtonsoft.Json.Linq;using System;using System.IO;using System.Net;using System.T ...

  4. python语言程序设计?

    1, 别说了,我还是有几分蛋疼的.女朋友..计算机..唉 2, 今天把那几个练习写完吧? 3, 这个注释有啥用最前面的?? 4, 我在学完python后必须学完C和C++并开始离散数学和线代高数等全复 ...

  5. C#实现.Net对邮件进行DKIM签名和验证,支持附件,发送邮件签名后直接投递到对方服务器(无需己方邮件服务器)

    项目地址 https://github.com/xiangyuecn/DKIM-Smtp-csharp 主要支持 对邮件进行DKIM签名,支持带附件 对整个邮件内容(.eml文件)的DKIM签名进行验 ...

  6. C#大型电商项目优化(三)——扩展性与支付

    上一篇文章引来不少非议,笔者并非对EF有看法,而是针对不同的业务场景和框架背景,挑选不同的方案.每个方案都有其优势劣势,挑选最快速,最简单的方案,是笔者的初衷. 看评论也是学习的过程,然而有些只做评价 ...

  7. .net 2.0 使用linq

    .net 2.0 使用linq,主要是使用Linq to Object,没有测试Linq to XML. 方法: 新建一个net2.0的程序,然后添加对System.Core.Dll的引用.引用时vs ...

  8. confluence上传文件附件预览乱码问题(linux服务器安装字体操作)

    在confluence上传excel文件,预览时发现乱码问题主要是因为再上传文件的时候一般是Windows下的文件上传,而预览的时候,是linux下的环境,由于linux下没有微软字体,所以预览的时候 ...

  9. nginx的web缓存服务环境部署记录

    web缓存位于内容源Web服务器和客户端之间,当用户访问一个URL时,Web缓存服务器会去后端Web源服务器取回要输出的内容,然后,当下一个请求到来时,如果访问的是相同的URL,Web缓存服务器直接输 ...

  10. C-代码笔记-输入输出

    .ACSII 字符实质和整数存储方式相同 //2018年9月16日01:35:54 # include <stdio.h> int main(void) { '; // printf(&q ...