洛谷 P1627 [CQOI2009]中位数 解题报告
P1627 [CQOI2009]中位数
题目描述
给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b。中位数是指把所有元素从小到大排列后,位于中间的数。
输入输出格式
输入格式:
第一行为两个正整数n和b,第二行为1~n的排列。
【数据规模】
对于30%的数据中,满足n≤100;
对于60%的数据中,满足n≤1000;
对于100%的数据中,满足n≤100000,1≤b≤n。
输出格式:
输出一个整数,即中位数为b的连续子序列个数。
这个题其实并不是很难想。
转换一下模型,我们发现对于中位数,我们只关心某个数比b大还是小,并不关心它具体是几,所以我们可以这样描述这串序列。
把比b大的数置为1,比b小的数置为-1,把b置为0。
用前缀和数组\(f[i]\)存储
则满足
- \(f[i]==f[j]\)
- \(i,j\)奇偶性不同
- 区间\(i+1,j\)存在值\(b=0\)
时,区间\([i+i,j]\)是满足条件的。
因为题目说是一个排列,所以只可能有一个b。
我们通过分奇偶存储值为\(f[k]\)的数的个数来描述。令\(cnt[0/1][i]\)代表位置为偶数(0)或奇数(1)的数\(i\)在\(b=0\)的左边的出现次数,则答案为\(\sum cnt[k\&1xor1][f[k]]\) ,\(k\)在\(b=0\)右边。
不过需要注意的是,因为\(f[i]\)可能为负,所以我们对每个\(f[i]\)加上\(n\)。我最开始没注意到居然还有90分
#include <cstdio>
const int N=100010;
int n,a,b,ans=0,f[N],cnt[2][N],flag=1;//1µ¥Î»0˫λ
int main()
{
scanf("%d%d",&n,&b);
cnt[0][n]=1;
f[0]=n;
for(int i=1;i<=n;i++)
{
scanf("%d",&a);
if(a>b)
{
f[i]=f[i-1]+1;
if(flag) cnt[i&1][f[i]]++;
else ans+=cnt[(i&1)^1][f[i]];
}
else if(a<b)
{
f[i]=f[i-1]-1;
if(flag) cnt[i&1][f[i]]++;
else ans+=cnt[(i&1)^1][f[i]];
}
else
{
f[i]=f[i-1];
ans+=cnt[(i&1)^1][f[i]];
flag=0;
}
}
printf("%d\n",ans);
return 0;
}
2018.6.12
洛谷 P1627 [CQOI2009]中位数 解题报告的更多相关文章
- 洛谷——P1627 [CQOI2009]中位数
P1627 [CQOI2009]中位数 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. 中位数的题目有关统计的话,可以转 ...
- 洛谷 P3871 [TJOI2010]中位数 解题报告
P3871 [TJOI2010]中位数 题目描述 给定一个由N个元素组成的整数序列,现在有两种操作: 1 add a 在该序列的最后添加一个整数a,组成长度为N + 1的整数序列 2 mid 输出当前 ...
- 洛谷 P1783 海滩防御 解题报告
P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...
- 洛谷 P4597 序列sequence 解题报告
P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...
- 洛谷1087 FBI树 解题报告
洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...
- 洛谷 P3349 [ZJOI2016]小星星 解题报告
P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...
- 洛谷 P3177 树上染色 解题报告
P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...
- 洛谷 P4705 玩游戏 解题报告
P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^ ...
- 洛谷 P1272 重建道路 解题报告
P1272 重建道路 题目描述 一场可怕的地震后,人们用\(N\)个牲口棚\((1≤N≤150\),编号\(1..N\))重建了农夫\(John\)的牧场.由于人们没有时间建设多余的道路,所以现在从一 ...
随机推荐
- vue开发小结(上)
前言: 18年年底,就一个字,忙,貌似一到年底哪个公司都在冲业绩,包括我们自己开发自己公司的项目也一样得加把劲.自从18年年初立了个flag17年年终总结——走过2017,迎来2018Flag到现在又 ...
- MySQL主主同步配置
1. MySQL主主配置过程 在上一篇实现了主从同步的基础上,进行主主同步的配置. 这里用node19(主),node20(从)做修改,使得node19和node20变为主主同步配置模式 修改配置文件 ...
- ASS字幕制作
虽然不常做视频,但正因为是偶尔用到,所以总是记不牢,特此笔记. Name 字体名称?Fontname 字体名称(\fn冬青黑体简体中文 W3)(\fnVogueSans)(例:\N{\fn冬青黑体简体 ...
- 把cnblogs变成简书 - cnblogs博客自定义皮肤css样式
吐槽 博客园cnblogs作为老牌的IT技术博客类网站,为广大的开发者提供了非常不错的学习交流平台. 虽然博客内容才是重点,但是如果有赏心悦目的页面不更好吗! cnblogs可以更换博客模板,并且提供 ...
- Abstractive Summarization
Sequence-to-sequence Framework A Neural Attention Model for Abstractive Sentence Summarization Alexa ...
- Linux内核分析第六周总结
进程控制块PCB--task_struct 操作系统的内核里的三大功能: 进程管理 内存管理 文件系统 进程描述符--task_struct 进程管理是最核心的内容 然而Linux进程的状态与操作系统 ...
- DWR实现服务器向客户端推送消息
原文链接 http://www.blogjava.net/stevenjohn/archive/2012/07/07/382447.html这片文章还是给了我很大帮助,再次表示感谢,下面我将这两天的研 ...
- 第六次作业-my Backlog
杨灵超小组 My Backlog 小学生四则运算自动生成(Backlog) ID Name IMP EST How to Demo ...
- A11-java学习-二维数组-面向对象概念-类的编写-测试类的编写-创建对象-使用对象-递归
二维数组的内存结构和使用 引用类型的内存结构 栈区.堆区.方法区.数据栈等内存分析和介绍 面向对象.面向过程区别和发展 类型的定义 引用类型.值类型 预定义类型和自定义类型 类型与对象(实例) 对象的 ...
- tftp服务、串口工具minicom
linux下安装tftp服务 参考这位仁兄的经验 确实百度上很多关于配置tftp服务的方法,但是这篇文章的介绍真的是很精简,对于一个刚接触纯linux环境的小白来说是很舒服的一件事. 首先是安装tft ...