题面

LOJ#6435. 「PKUSC2018」星际穿越

题解

**参考了 这位大佬的博客 **

这道题好恶心啊qwq~~

首先一定要认真阅读题目 !! 注意 \(l_i<r_i<x_i\) 这个条件 !!

所以它询问的就是向左走的最短路了 .

不难发现只有两种策略 , 要么一直向左走 ; 要么第一次向右走 , 然后一直向左走 .

并且到一个定点 \(x\) 的最短路长度 肯定是从右向左一段段递增的 .

 为什么呢 ? 不难发现 如果向右走两次 , 那么只有一次是一定有效的 , 另外一次的 \(l_i\) 一定不会小于这次 .

向左走的话 , 每次就记下沿途的 \(l_i\) 的最小值 , 用这个去转移走 \(j\) 次时 \(l\) 的最小值就行了 . ( \(70pts\) 见我 \(LOJ\) 提交吧qwq .)

然后这样暴力做的话就是 \(O(n^2)\) 的复杂度 显然不行 .

考虑优化 , 发现这个是一段段的 且 有连续性 , 有一个神奇的倍增可以快速实现这个功能 .

令 \(f_{i, j}\) 为 \([i, n]\) 所有点走 \(2^j\) 次能到达的最左端点 .

\[\displaystyle f_{i,j} = f_{f_{i,j-1},j-1}
\]

为什么要这样记呢 ? 因为这样可以同时统计第一次向右走可能产生的贡献 .

令 \(sum_{i,j}\) 为 \(i \to (i \sim f_{i,j})\) 中所有点走的步数之和 . 这个转移就很显然啦 .

\[sum_{i,j} = sum_{i,j-1}+sum_{{f_{i,j-1}},j-1} + (f_{i,j-1}-f_{f_{i,j-1},j-1})*2^{j-1}
\]

然后我们考虑走的时候算答案 . 因为我们一开始预处理只包括了可能向右走的情况 , 但直接第一步向左走的没有处理掉 .

此处我们单独处理第一步向左走的情况就行了 .

令 \(Calc(i, pos)\) 为 \(i \to [i, pos)\) 的所需步数之和 . 那么每次询问就能用差分来表示成 \(Calc(l,pos) - Calc(r + 1, pos)\) 了 .

然后倍增的时候类似于这样跳的 :

假设我们总共要经过的是 红色 那一段(其中 \(l_{pos}\) 已经跳完了) , 每次走的是 粉色 那一段 .

发现我们每次走的时候 , 要记下前面走了多少步数 , 然后给答案加上这一段的贡献 \(len \times tot\) .

最后有一小段多余的 蓝紫色 (因为每次 \(2^j\) 覆盖的是所有步数为这么多的 , 最后可能不满) 这段贡献就是 \(len \times (tot + 1)\) .

代码好像很短 ?

代码

#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define debug(a) cout << #a << ": " << a << endl
using namespace std; inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;} inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
return x * fh;
} void File() {
#ifdef zjp_shadow
freopen ("6435.in", "r", stdin);
freopen ("6435.out", "w", stdout);
#endif
} const int N = 3e5 + 1e3, inf = 0x3f3f3f3f; int L[N], n, f[N][21], sum[N][21], Log2[N]; void Init() {
f[n + 1][0] = inf;
Fordown (i, n, 1)
f[i][0] = min(f[i + 1][0], L[i]), sum[i][0] = i - f[i][0];
For (j, 1, Log2[n]) For (i, 1, n) if (f[i][j - 1]) {
f[i][j] = f[f[i][j - 1]][j - 1];
sum[i][j] = sum[i][j - 1] + sum[f[i][j - 1]][j - 1] + ((f[i][j - 1] - f[i][j]) << (j - 1));
}
} inline int Calc(int qp, int pos) {
if (L[pos] <= qp) return pos - qp;
int res = pos - L[pos]; pos = L[pos]; int tot = 1;
Fordown (i, Log2[pos], 0)
if (f[pos][i] > qp) res += sum[pos][i] + (pos - f[pos][i]) * tot, pos = f[pos][i], tot += 1 << i;
return res + (pos - qp) * (tot + 1);
} int main () {
File(); n = read(); L[1] = 1; For (i, 2, n) L[i] = read(), Log2[i] = Log2[i >> 1] + 1; Init(); int m = read();
For (i, 1, m) {
int l = read(), r = read(), x = read();
int ans = Calc(l, x) - Calc(r + 1, x), len = r - l + 1, g = __gcd(ans, len);
printf ("%d/%d\n", ans / g, len / g);
} return 0;
}

LOJ #6435. 「PKUSC2018」星际穿越(倍增)的更多相关文章

  1. LOJ 6435 「PKUSC2018」星际穿越——DP+倍增 / 思路+主席树

    题目:https://loj.ac/problem/6435 题解:https://www.cnblogs.com/HocRiser/p/9166459.html 自己要怎样才能想到怎么做呢…… dp ...

  2. loj#6435. 「PKUSC2018」星际穿越(倍增)

    题面 传送门 题解 我们先想想,在这个很特殊的图里该怎么走最短路 先设几个量,\(a_i\)表示\([a_i,i-1]\)之间的点都和\(i\)有边(即题中的\(l_i\)),\(l\)表示当前在计算 ...

  3. 【LOJ】#6435. 「PKUSC2018」星际穿越

    题解 想出70的大众分之后就弃疗了,正解有点神仙 就是首先有个比较显然的结论,就是要么是一直往左走,要么是走一步右边,然后一直往左走 根据这个可以结合RMQ写个70分的暴力 我们就考虑,最优的话显然是 ...

  4. #6435. 「PKUSC2018」星际穿越

    考场上写出了70分,现在填个坑 比较好写的70分是这样的:(我考场上写的贼复杂) 设\(L(i)=\min_{j=i}^nl(j)\) 那么从i开始向左走第一步能到达的就是\([l(i),i-1]\) ...

  5. 「PKUSC2018」星际穿越 (70分做法)

    5371: [Pkusc2018]星际穿越 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 27  Solved: 11[Submit][Status] ...

  6. 「PKUSC2018」星际穿越(倍增)

    倍增好题啊! 我们我们预处理 \(f[x][i]\) 表示 \(x\) 点最左到达的端点,\(sum[x][i]\) 表示 \(x\) 点最左到达的端点时 \(f[x][i]\sim x\) 的答案, ...

  7. 「PKUSC2018」星际穿越

    传送门 Solution  倍增 Code  #include <bits/stdc++.h> #define reg register #define ll long long usin ...

  8. LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)

    题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...

  9. LOJ #6432. 「PKUSC2018」真实排名(组合数)

    题面 LOJ #6432. 「PKUSC2018」真实排名 注意排名的定义 , 分数不小于他的选手数量 !!! 题解 有点坑的细节题 ... 思路很简单 , 把每个数分两种情况讨论一下了 . 假设它为 ...

随机推荐

  1. IDC Digital Transition Annual Festival(2018.10.19)

    时间:2018.10.19地点:北京万达文化酒店

  2. odoo11 访问web/database/manager管理数据库页面布局混乱问题

    最近在使用odoo11开发自己的模块时,在管理数据库的页面的时候,页面布局混乱,查看http加载页面的时候大量的js css文件没有加载成功,被卡了3天,现在问题找到. 问题是在加入自己的custom ...

  3. MemAdmin 轻量级可视化Memcached管理工具

    蛮好用的 具体功能看图 开源地址:https://github.com/junstor/memadmin

  4. ant+Jacoco 统计tomcat远程部署后项目接口自动化测试或者功能测试代码覆盖率

    1.安装ant 环境,https://ant.apache.org/bindownload.cgi 2.下载jacoco包  https://www.eclemma.org/jacoco/ ,解压后, ...

  5. 并行管理工具——pdsh

    1. pdsh安装2. pdsh常规使用2.1 pdsh2.2 pdcp 并行管理的方式有很多种: 命令行 一般是for循环 脚本 一般是expect+ssh等自编辑脚本 工具 pssh,pdsh,m ...

  6. 2018年高教社杯全国大学生数学建模竞赛B题解题思路

    题目 先贴下B题的题目吧 问题B    智能RGV的动态调度策略 图1是一个智能加工系统的示意图,由8台计算机数控机床(Computer Number Controller,CNC).1辆轨道式自动引 ...

  7. 从Stampery到Chronicled,区块链公证业务的实践

    Stampery就是这样一家利用比特币区块链技术代替公证人的创业公司,能为所有的敏感文件提供具有法律约束力的证明.可以用Stampery证明任何文件,它能很好地保护知识产权,证明遗嘱.宣誓.合同.家庭 ...

  8. 个人作业 - Week3 - 案例分析

    调研与评测 真实用户采访: 用户姓名: 刘斯盾 用户的背景和需求: 用户是一位计算机专业学生,需要浏览技术博客来扩充自己的学识. 用户使用博客园证明: 产品是否解决用户问题: 在码代码过程中遇到的很多 ...

  9. NODE中解决跨域请求的问题

    1.Node Express 解决请求跨域请求 标签(空格分隔): 跨域 1是Access-Control-Allow-Origin 允许的域 2是Access-Control-Allow-Heade ...

  10. sap 最新财报以及云业务转型情况

    SAP第四季度收入超预期 加码云转型启动重组计划 http://soft.zhiding.cn/software_zone/2019/0130/3115457.shtml 尽管第四季度超出收入预期,但 ...