POJ2635-The Embarrassed Cryptographer-大整数素因子
计算一个大整数(10^100)中有没有一个小于L的素因子。这个大整数是两个素数的乘积。其实就是RSA加密。
做法是把大整数表示成千进位,用数组存储,然后一位一位地取模。
/*--------------------------------------------------------------------------------------*/
// Helica's header
// Second Editions
// 2015.11.7
//
#include <algorithm>
#include <iostream>
#include <cstring>
#include <ctype.h>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <string>
#include <queue>
#include <stack>
#include <cmath>
#include <set>
#include <map> //debug function for a N*M array
#define debug_map(N,M,G) printf("\n");for(int i=0;i<(N);i++)\
{for(int j=;j<(M);j++){\
printf("%d",G[i][j]);}printf("\n");}
//debug function for int,float,double,etc.
#define debug_var(X) cout<<#X"="<<X<<endl;
/*--------------------------------------------------------------------------------------*/
using namespace std; int N,M,T,L;
char save[];
int num[]; const int MAXN = ;
int prime[MAXN]; void getPrime()
{
memset(prime,,sizeof prime);
for(int i=;i<=MAXN;i++)
{
if(!prime[i]) prime[++prime[]] = i;
for(int j=;j<=prime[]&&prime[j]<=MAXN/i;j++)
{
prime[prime[j]*i] = ;
if(i%prime[j] == ) break;
}
}
} bool mod(int p,int len)
{
int r = ;
for(int i=len-;i>=;i--)
r = (r* + num[i])%p; if(!r) return false;
else return true;
} int main()
{
getPrime(); while(scanf("%s%d",save,&L) && L)
{
int flag = ;
int len = strlen(save); memset(num,,sizeof num); for(int i=;i<len;i++)
{
int p = (len+-i)/-;
num[p] = num[p]*+(save[i]-'');
}
len = (len+)/; for(int i=;prime[i]<L;i++)
{
int p = prime[i];
//printf("p=%d\n",p);
if(!mod(p,len))
{
printf("BAD %d\n",p);
flag = false;
break;
}
}
if(flag) printf("GOOD\n");
}
}
POJ2635-The Embarrassed Cryptographer-大整数素因子的更多相关文章
- POJ2635——The Embarrassed Cryptographer(高精度取模+筛选取素数)
The Embarrassed Cryptographer DescriptionThe young and very promising cryptographer Odd Even has imp ...
- (POJ2635)The Embarrassed Cryptographer(大数取模)
The Embarrassed Cryptographer Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13041 Accep ...
- HDU 2303 The Embarrassed Cryptographer
The Embarrassed Cryptographer 题意 给一个两个素数乘积(1e100)K, 给以个数L(1e6), 判断K的两个素数是不是都大于L 题解 对于这么大的范围,素数肯定是要打表 ...
- POJ 1811 Prime Test (Pollard rho 大整数分解)
题意:给出一个N,若N为素数,输出Prime.若为合数,输出最小的素因子.思路:Pollard rho大整数分解,模板题 #include <iostream> #include < ...
- HDU2303(数论)大整数求余+素数筛选
Sample Input 143 10 143 20 667 20 667 30 2573 30 2573 40 0 0 Sample Output GOOD BAD 11 GOOD BAD 23 ...
- Miller-Rabin 素性测试 与 Pollard Rho 大整数分解
\(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...
- Project Euler 29 Distinct powers( 大整数质因数分解做法 + 普通做法 )
题意: 考虑所有满足2 ≤ a ≤ 5和2 ≤ b ≤ 5的整数组合生成的幂ab: 22=4, 23=8, 24=16, 25=3232=9, 33=27, 34=81, 35=24342=16, 4 ...
- poj2389-Bull Math(大整数乘法)
一,题意: 大整数乘法模板题二,思路: 1,模拟乘法(注意"逢十进一") 2,倒序输出(注意首位0不输出) 三,步骤: 如:555 x 35 = 19425 5 5 5 5 5 ...
- AC日记——大整数的因子 openjudge 1.6 13
13:大整数的因子 总时间限制: 1000ms 内存限制: 65536kB 描述 已知正整数k满足2<=k<=9,现给出长度最大为30位的十进制非负整数c,求所有能整除c的k. 输入 ...
随机推荐
- android 解决ScrollView中的子布局不能够填充整个ScrollView的情况。
在开发中如果你的xml文件的跟布局是ScrollView,在ScrollView中无论你写什么样的布局,其默认情况下都是不能填充整个布局的.也就是说你的ScrollView中的子布局设置fill_pa ...
- 开发板测试-Wi-Fi
一,下载STM32程序 1,方式一,串口下载(其他下载方式在最后补充) ①调整拨动开关位置 → 短接BOOT0和3.3V → 复位STM32 ②打开下载软件,下载程序 去掉短接 ③测试 {data:s ...
- Android应用更新-自动检测版本及自动升级
原文 http://www.cnblogs.com/keyindex/articles/1819504.html 注:实质,把自己新版的APK放在可以下载的地方,先自己设置个通信,检查版本,我是直接放 ...
- [05] 动态SQL
MyBatis的强大特性之一就是它的动态SQL,它可以根据不同的条件动态地组成SQL语句进行执行.为此,MyBatis提供了一系列强大的表达式,本章将就此进行学习,主要内容直接参考的是官方文档< ...
- 5、数组&字符串&结构体&共用体&枚举
程序中内存从哪里来 三种内存来源:栈(stack).堆(heap).数据区(.date): 栈(stack) 运行自动分配.自动回收,不需要程序员手工干预: 栈内存可以反复使用: 栈反复使用后,程序不 ...
- YOU AND ME 不见不散(转载)
(看到一篇挺不错的文章,看了挺有感触的,与大家共勉.) 泰戈尔说: 有一个夜晚,我烧毁了所有的记忆, 从此我的梦就透明了: 有个早晨我扔掉了所有的昨天, 从此我的脚步就轻盈了! 越过山丘,才发现无人等 ...
- java算法----排序----(7)堆排序
package log; import java.util.Arrays; public class Test4 { /** * 堆排序 * * @param args */ public stati ...
- ASP.NET Core如何设置请求超时时间
如果一个请求在ASP.NET Core中运行太久,会导致请求超时,目前ASP.NET Core对请求超时的设置比较麻烦,本文列出目前收集到的一些方法,供大家参考. 部署ASP.NET Core到IIS ...
- bat基础知识
1.打日志:使用重定向 eg:call test.bat>log/test.log 2.不关闭cmd窗口:使用pause eg: 结果: ps:注意,在自动化运维的时候,比如创建自动发版的脚本的 ...
- electron 开发实时加载
第一个方式 cnpm install electron-reload --save-dev cnpm install electron-prebuilt --save-dev require('ele ...