BZOJ1047[HAOI2007]理想的正方形——二维ST表
题目描述
有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值
的差最小。
输入
第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每
行相邻两数之间用一空格分隔。
100%的数据2<=a,b<=1000,n<=a,n<=b,n<=1000
输出
仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值。
样例输入
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2
样例输出
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int a,b;
int n,m;
int f[1010][1010][12];
int g[1010][1010][12];
int ans=1e9+7;
int main()
{
scanf("%d%d%d",&a,&b,&n);
for(int i=1;i<=a;i++)
{
for(int j=1;j<=b;j++)
{
scanf("%d",&f[i][j][0]);
g[i][j][0]=f[i][j][0];
}
}
for(int k=1;k<=10;k++)
{
for(int i=1;i<=a;i++)
{
for(int j=1;j<=b;j++)
{
if(i<(1<<k)||j<(1<<k))
{
continue;
}
f[i][j][k]=max(max(f[i][j][k-1],f[i-(1<<(k-1))][j-(1<<(k-1))][k-1]),max(f[i-(1<<(k-1))][j][k-1],f[i][j-(1<<(k-1))][k-1]));
g[i][j][k]=min(min(g[i][j][k-1],g[i-(1<<(k-1))][j-(1<<(k-1))][k-1]),min(g[i-(1<<(k-1))][j][k-1],g[i][j-(1<<(k-1))][k-1]));
}
}
}
for(int i=0;;i++)
{
if((1<<i)<=n)
{
m=i;
}
else
{
break;
}
}
for(int i=n;i<=a;i++)
{
for(int j=n;j<=b;j++)
{
int mx=max(max(f[i][j][m],f[i-n+(1<<m)][j-n+(1<<m)][m]),max(f[i][j-n+(1<<m)][m],f[i-n+(1<<m)][j][m]));
int mn=min(min(g[i][j][m],g[i-n+(1<<m)][j-n+(1<<m)][m]),min(g[i][j-n+(1<<m)][m],g[i-n+(1<<m)][j][m]));
ans=min(mx-mn,ans);
}
}
printf("%d",ans);
}
BZOJ1047[HAOI2007]理想的正方形——二维ST表的更多相关文章
- [BZOJ1047][HAOI2007]理想的正方形 二维单调队列
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1047 我们对每矩阵的一列维护一个大小为$n$的单调队列,队中元素为矩阵中元素.然后扫描每一 ...
- bzoj1047 [HAOI2007]理想的正方形——二维单调队列
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1047 就是先对行做一遍单调队列,再对那个结果按列做一遍单调队列即可. 代码如下: #incl ...
- 【BZOJ1047】[HAOI2007]理想的正方形 (倍增ST表)
[HAOI2007]理想的正方形 题目描述 有一个\(a*b\)的整数组成的矩阵,现请你从中找出一个\(n*n\)的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: ...
- 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列
题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...
- [HNOI2007] 理想正方形 二维ST表
题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至 ...
- 【bzoj1047】[HAOI2007]理想的正方形 二维RMQ
题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非 ...
- 【洛谷 P2216】 [HAOI2007]理想的正方形(二维ST表)
题目链接 做出二维\(ST\)表,然后\(O(n^2)\)扫一遍就好了. #include <cstdio> #include <cstring> #include <a ...
- BZOJ3577:玩手机(最大流,二维ST表)
Description 现在有一堆手机放在坐标网格里面(坐标从1开始),坐标(i,j)的格子有s_(i,j)个手机. 玩手机当然需要有信号,不过这里的手机与基站与我们不太一样.基站分为两种:发送站和接 ...
- 【CodeForces】713 D. Animals and Puzzle 动态规划+二维ST表
[题目]D. Animals and Puzzle [题意]给定n*m的01矩阵,Q次询问某个子矩阵内的最大正方形全1子矩阵边长.n,m<=1000,Q<=10^6. [算法]动态规划DP ...
随机推荐
- Photoshop 基础三 制作简单按钮
要求知识点:移动工具.选择工具.套索工具.多边行工具.文本工具.路径选择工具.裁剪.填充 一.制作简单按钮 1)新建画布,大小随便 2)画圆角矩形工具(同时定义背景色.边框是否需求.边框颜色) 3)打 ...
- Android学习之基础知识八—Android广播机制
一.广播机制简介 Android提供了一套完整的API,允许应用程序自由的发送和接受广播,发送广播借助于我们之前学过的:Intent,而接收广播需要借助于广播接收器(Broadcast Receive ...
- P4208 [JSOI2008]最小生成树计数
现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)输出方案数对31011 ...
- [05] Bean的作用域和生命周期
1.Bean的作用域和初始化时间 之前我们稍微提到过,Spring中管理的Bean,默认都是单例模式,这意味着你多次获取某个对象,得到的都是相同的对象.单例作用域的显性写法是scope属性,如下,这和 ...
- 7、存储类 & 作用域 & 生命周期 & 链接属性
概念解析 存储类 存储类就是存储类型,也就是描述C语言变量在何种地方存储. 内存有多种管理方法:栈.堆.数据段.bss段..text段······一个变量的存储类属性就是描述这个变量存储在何种内存段中 ...
- Vue-接口跨域请求调试proxyTable
在项目开发的时候,接口联调的时候一般都是同域名下,且不存在跨域的情况下进行接口联调,但是当我们现在使用vue-cli进行项目打包的时候,我们在本地启动服务器后,比如本地开发服务下是 http://lo ...
- Ionic Android项目Splash设置
ionic项目中,在splashscreen消失后会出现零点几秒的白屏,再出现app页面. 1. 安装Cordova splash screen插件 ionic plugin add org.apac ...
- 千兆以太网TCP协议的FPGA实现
转自https://blog.csdn.net/zhipao6108/article/details/82386355 千兆以太网TCP协议的FPGA实现 Lzx 2017/4/20 写在前面,这应该 ...
- Express4.x API (三):Response (译)
Express4.x API 译文 系列文章 Express4.x API (一):application (译) -- 完成 Express4.x API (二):request (译) -- 完成 ...
- [UWP 自定义控件]了解模板化控件(2):模仿ContentControl
ContentControl是最简单的TemplatedControl,而且它在UWP出场频率很高.ContentControl和Panel是VisualTree的基础,可以说几乎所有VisualTr ...