题目描述

一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},
1 = 1
2 = 1+1
3 = 1+1+1
4 = 4
5 = 4+1
6 = 4+1+1
7 = 4+1+1+1
8无法表示为集合S的子集的和,故集合S的神秘数为8。
现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间[l,r](l<=r),求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。

输入

第一行一个整数n,表示数字个数。 第二行n个整数,从1编号。 第三行一个整数m,表示询问个数。 以下m行,每行一对整数l,r,表示一个询问。

输出

对于每个询问,输出一行对应的答案。

样例输入

5
1 2 4 9 10
5
1 1
1 2
1 3
1 4
1 5

样例输出

2
4
8
8
8

提示

对于100%的数据点,n,m <= 100000,∑a[i] <= 10^9

很有思维含量的一道主席树,要考虑的问题就是一个序列的神秘数。我们假设已经处理完了前面一些较小数的神秘数ans(ans刚开始是1),如果小于等于ans的数的和是sum(sum显然一定>=ans-1)。当sum<ans(即sum=ans-1)时,这个序列的神秘数就是ans,因为这些数(即之前所说的那些较小的数)最大能表示ans-1,而剩下数都比ans大,无法表示ans。当sum>=ans时,1~sum的数都能表示,假设比ans小的数中除去那些较小的数剩下的是a1,a2,a3……,那么1~ans-1+a1都能表示(因为ans~ans+a1-1中的任意一个数减a1一定小于ans,即一定能由那些较小的数表示),这时较小的数与a1的神秘数就是ans+a1。再将a2加进去,那么1~ans+a1+a2-1的数也就都能表示,以此类推就能得到1~sum的数都能表示。每次只要查询主席树上的前缀和与ans判断一下然后再更新ans就好了。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
int x,y;
int cnt;
int v[100010];
int a[100010];
int root[100010];
int sum[6000010];
int ls[6000010];
int rs[6000010];
int updata(int pre,int l,int r,int v)
{
int rt=++cnt;
if(l==r)
{
sum[rt]=sum[pre]+a[v];
return rt;
}
ls[rt]=ls[pre];
rs[rt]=rs[pre];
sum[rt]=sum[pre]+a[v];
int mid=(l+r)>>1;
if(v<=mid)
{
ls[rt]=updata(ls[pre],l,mid,v);
}
else
{
rs[rt]=updata(rs[pre],mid+1,r,v);
}
return rt;
}
int query(int x,int y,int l,int r,int k)
{
if(l==r)
{
return sum[y]-sum[x];
}
int mid=(l+r)>>1;
if(k<=mid)
{
return query(ls[x],ls[y],l,mid,k);
}
else
{
return query(rs[x],rs[y],mid+1,r,k)+sum[ls[y]]-sum[ls[x]];
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
v[i]=a[i];
}
sort(a+1,a+1+n);
for(int i=1;i<=n;i++)
{
v[i]=lower_bound(a+1,a+1+n,v[i])-a;
}
for(int i=1;i<=n;i++)
{
root[i]=updata(root[i-1],1,n,v[i]);
}
a[n+1]=1<<30;
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
int mx=1;
int ans;
if(upper_bound(a+1,a+2+n,mx)-a-1==0)
{
printf("1\n");
continue;
}
while((ans=query(root[x-1],root[y],1,n,upper_bound(a+1,a+2+n,mx)-a-1))>=mx)
{
mx=ans+1;
}
printf("%d\n",mx);
}
}

BZOJ4408&4299[Fjoi 2016]神秘数——主席树的更多相关文章

  1. 【bzoj4408】[Fjoi 2016]神秘数 主席树

    题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1+1+14 = 45 = 4+16 = 4+1+1 ...

  2. 【BZOJ4408】[Fjoi 2016]神秘数 主席树神题

    [BZOJ4408][Fjoi 2016]神秘数 Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1 ...

  3. BZOJ 4408: [Fjoi 2016]神秘数 [主席树]

    传送门 题意: 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},8无法表示为集合S的子集的和,故集合S的神秘数为8.现给定n个正整数a[1]. ...

  4. BZOJ 4408: [Fjoi 2016]神秘数 主席树 + 神题

    Code: #include<bits/stdc++.h> #define lson ls[x] #define mid ((l+r)>>1) #define rson rs[ ...

  5. [BZOJ4408][Fjoi 2016]神秘数

    [BZOJ4408][Fjoi 2016]神秘数 试题描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1 ...

  6. Bzoj 4408: [Fjoi 2016]神秘数 可持久化线段树,神题

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 177  Solved: 128[Submit][Status ...

  7. BZOJ 4408: [Fjoi 2016]神秘数 可持久化线段树

    4408: [Fjoi 2016]神秘数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4408 Description 一个可重复数字集 ...

  8. BZOJ 4408: [Fjoi 2016]神秘数

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 464  Solved: 281[Submit][Status ...

  9. 4408: [Fjoi 2016]神秘数

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 452  Solved: 273 [Submit][Stat ...

随机推荐

  1. ubuntu 14.04 安装jdk 1.8

    一,如何删除低版本的open JDK? 在ubuntn的软件中心中,如果输入"Java",我们会看到open JDK,但是最高版本是1.7,也有1.6版本的,如果我们安装上去,可能 ...

  2. kubernetes集群中对多个pod操作命令

    $ for i in 0 1; do kubectl exec web-$i -- sh -c 'echo hello $(hostname) > /usr/share/nginx/html/i ...

  3. 11-(基础入门篇)WiFi模块开发,下载运行第一个程序

    https://www.cnblogs.com/yangfengwu/p/9954840.html 第一就是重新刷一下固件,咱们的固件保持一致,有问题好处理 先刷空固件 我用的 所以刷8Mbit的 给 ...

  4. [julia]本地离线安装package

    1.引言 julia最近十分受关注,其结合了python的通用性,Ruby的动态性,C的代码运行速度,R的包管理和数据分析功能,perl的字符串处理能力,lisp的宏能力,matlab的矩阵计算规则, ...

  5. java中的异常区分

    在上图中,粉红色的部分为受检查的异常,其必须被try{}catch语句块所捕获,或者在方法中向外抛出异常 绿色的异常为运行时异常,需要程序员自行分辨是否要解决异常或者抛出异常,例空指针数组下标越界等等 ...

  6. sql 语言

    sql 语言 DDL DDL 全称 Data Definition Language,即数据定义语言. DATABASE 创建数据库 CREATE DATABASE 语句用于创建数据库. CREATE ...

  7. dpkg:错误:正在解析文件 '/var/lib/dpkg/updates/0014' 第 0 行附近:在字段名 #padding 中有换行符问题的解决方法

    解决方案如下: sudo rm /var/lib/dpkg/updates/* sudo apt-get update python@ubuntu:~/Desktop/_Welcome_.jpg.ex ...

  8. libc.so.6: version 'GLIBC_2.14' not found报错提示的解决方案

    线上一台服务器在执行leveldb程序的时候,报错:"libc.so.6: version `GLIBC_2.14' not found". 排查原因及解决方法如下: 1)产生原因 ...

  9. 前端安全之XSS

    XSS定义 XSS, 即为(Cross Site Scripting), 中文名为跨站脚本, 是发生在目标用户的浏览器层面上的,当渲染DOM树的过程成发生了不在预期内执行的JS代码时,就发生了XSS攻 ...

  10. B. Heaters Div3

    链接 [http://codeforces.com/contest/1066/problem/B] 分析 具体看代码,贪就完事了 代码 #include<bits/stdc++.h> us ...