题目描述

一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},
1 = 1
2 = 1+1
3 = 1+1+1
4 = 4
5 = 4+1
6 = 4+1+1
7 = 4+1+1+1
8无法表示为集合S的子集的和,故集合S的神秘数为8。
现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间[l,r](l<=r),求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。

输入

第一行一个整数n,表示数字个数。 第二行n个整数,从1编号。 第三行一个整数m,表示询问个数。 以下m行,每行一对整数l,r,表示一个询问。

输出

对于每个询问,输出一行对应的答案。

样例输入

5
1 2 4 9 10
5
1 1
1 2
1 3
1 4
1 5

样例输出

2
4
8
8
8

提示

对于100%的数据点,n,m <= 100000,∑a[i] <= 10^9

很有思维含量的一道主席树,要考虑的问题就是一个序列的神秘数。我们假设已经处理完了前面一些较小数的神秘数ans(ans刚开始是1),如果小于等于ans的数的和是sum(sum显然一定>=ans-1)。当sum<ans(即sum=ans-1)时,这个序列的神秘数就是ans,因为这些数(即之前所说的那些较小的数)最大能表示ans-1,而剩下数都比ans大,无法表示ans。当sum>=ans时,1~sum的数都能表示,假设比ans小的数中除去那些较小的数剩下的是a1,a2,a3……,那么1~ans-1+a1都能表示(因为ans~ans+a1-1中的任意一个数减a1一定小于ans,即一定能由那些较小的数表示),这时较小的数与a1的神秘数就是ans+a1。再将a2加进去,那么1~ans+a1+a2-1的数也就都能表示,以此类推就能得到1~sum的数都能表示。每次只要查询主席树上的前缀和与ans判断一下然后再更新ans就好了。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
int x,y;
int cnt;
int v[100010];
int a[100010];
int root[100010];
int sum[6000010];
int ls[6000010];
int rs[6000010];
int updata(int pre,int l,int r,int v)
{
int rt=++cnt;
if(l==r)
{
sum[rt]=sum[pre]+a[v];
return rt;
}
ls[rt]=ls[pre];
rs[rt]=rs[pre];
sum[rt]=sum[pre]+a[v];
int mid=(l+r)>>1;
if(v<=mid)
{
ls[rt]=updata(ls[pre],l,mid,v);
}
else
{
rs[rt]=updata(rs[pre],mid+1,r,v);
}
return rt;
}
int query(int x,int y,int l,int r,int k)
{
if(l==r)
{
return sum[y]-sum[x];
}
int mid=(l+r)>>1;
if(k<=mid)
{
return query(ls[x],ls[y],l,mid,k);
}
else
{
return query(rs[x],rs[y],mid+1,r,k)+sum[ls[y]]-sum[ls[x]];
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
v[i]=a[i];
}
sort(a+1,a+1+n);
for(int i=1;i<=n;i++)
{
v[i]=lower_bound(a+1,a+1+n,v[i])-a;
}
for(int i=1;i<=n;i++)
{
root[i]=updata(root[i-1],1,n,v[i]);
}
a[n+1]=1<<30;
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
int mx=1;
int ans;
if(upper_bound(a+1,a+2+n,mx)-a-1==0)
{
printf("1\n");
continue;
}
while((ans=query(root[x-1],root[y],1,n,upper_bound(a+1,a+2+n,mx)-a-1))>=mx)
{
mx=ans+1;
}
printf("%d\n",mx);
}
}

BZOJ4408&4299[Fjoi 2016]神秘数——主席树的更多相关文章

  1. 【bzoj4408】[Fjoi 2016]神秘数 主席树

    题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1+1+14 = 45 = 4+16 = 4+1+1 ...

  2. 【BZOJ4408】[Fjoi 2016]神秘数 主席树神题

    [BZOJ4408][Fjoi 2016]神秘数 Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1 ...

  3. BZOJ 4408: [Fjoi 2016]神秘数 [主席树]

    传送门 题意: 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},8无法表示为集合S的子集的和,故集合S的神秘数为8.现给定n个正整数a[1]. ...

  4. BZOJ 4408: [Fjoi 2016]神秘数 主席树 + 神题

    Code: #include<bits/stdc++.h> #define lson ls[x] #define mid ((l+r)>>1) #define rson rs[ ...

  5. [BZOJ4408][Fjoi 2016]神秘数

    [BZOJ4408][Fjoi 2016]神秘数 试题描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1 ...

  6. Bzoj 4408: [Fjoi 2016]神秘数 可持久化线段树,神题

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 177  Solved: 128[Submit][Status ...

  7. BZOJ 4408: [Fjoi 2016]神秘数 可持久化线段树

    4408: [Fjoi 2016]神秘数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4408 Description 一个可重复数字集 ...

  8. BZOJ 4408: [Fjoi 2016]神秘数

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 464  Solved: 281[Submit][Status ...

  9. 4408: [Fjoi 2016]神秘数

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 452  Solved: 273 [Submit][Stat ...

随机推荐

  1. [06] 利用mybatis-generator自动生成代码

    1.mybatis-generator 概述 MyBatis官方提供了逆向工程 mybatis-generator,可以针对数据库表自动生成MyBatis执行所需要的代码(如Mapper.java.M ...

  2. UOJ347 WC2018 通道 边分治、虚树

    传送门 毒瘤数据结构题qwq 设三棵树分别为$T1,T2,T3$ 先将$T1$边分治,具体步骤如下: ①多叉树->二叉树,具体操作是对于每一个父亲,建立与儿子个数相同的虚点,将父亲与这些虚点穿成 ...

  3. JS-JS变量命名规则

    原则 变量名区分大小写,允许包含字母.数字.美元符号($)和下划线,但第一个字符不允许是数字,不允许包含空格和其他标点符号. 禁止使用JavaScript关键词.保留字全名. 变量命名长度应该尽可能的 ...

  4. ubuntu 中iptables

    ubuntu中启动及关闭iptables 在ubuntu中由于不存在 /etc/init.d/iptales文件,所以无法使用service等命令来启动iptables,需要用modprobe命令. ...

  5. Luogu P3959 宝藏

    这道题正解是状压DP,不过我不会所以写一下随机化算法来骗骗分. 听说当时考场上就有很多写prim然后挂掉的神仙,其实这道题是可以prim过的 prim是一种基于贪心的算法,在本题中由于盲目的选择当前最 ...

  6. [Oracle]如何查看 10046 trace 中的 tim= ... 的具体时刻

    可以在  Linux 下,用下列方式: 如10046 trace 文件中如果有如下的内容:... tim = 1503032923 可以用 date 命令加 option 来看它的时刻: date - ...

  7. [T-ARA][남주긴 아까워][给别人可惜了]

    歌词来源:http://music.163.com/#/song?id=29343992 作曲 : 二段横踢/Radio Galaxi [作曲 : 二段横踢/Radio Galaxi] 作词 : 二段 ...

  8. mysql 多列索引的生效规则,生成1000w数据的存储过程

    https://www.cnblogs.com/codeAB/p/6387148.html

  9. c#词频统计命令行程序

    这里将用c#写一个关于词频统计的命令行程序. 预计时间分配:输入处理3h.词条排序打印2h.测试3h. 实际时间分配:输入处理1h.词条排序打印2h.测试3h.程序改进优化6h. 下面将讲解程序的完成 ...

  10. 【SE】Week17 : 软件工程课程总结

    软工课程总结  总算结束了一个学期大部分的事情,可以静下心来写篇软工的总结了. 在本学期的软工课程中,我担任的角色是Chronos团队的PM兼开发人员.在课程之前,我认为PM的角色应该还蛮轻松的,无非 ...