一道比较简单的概率DP

首先看到这种题目和数据范围,就要毫不犹豫地列DP方程:

我们令\(f_{i,j}\)表示还剩下i个人时编号为j的人的胜率,那么首先我们可以知道边界条件\(f_{1,1}=1\)

然后我们考虑多一个人的情况会是怎样。

我们先枚举还剩下\(i(2<=i<=n)\)个人,然后对于每一个人\(j(1<=j<=i)\)(注意这里是的\(j\)指的是在这\(i\)个人里的编号

然后枚举卡片\(k\),对于上面的数字\(a_k\)我们先得出这一轮会被淘汰的人的编号\(x\)。然后如果\(x\ne j\)那么就有转移:

  • \(f_{i,j}+=\frac{f_{i-1,i-x+j}}{m}(x>j)\)
  • \(f_{i,j}+=\frac{f_{i-1,j-x}}{m}(x<j)\)

然后就可以A了

CODE

#include<cstdio>
using namespace std;
const int N=55;
int a[N],n,m;
double f[N][N];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch=tc();
while (ch<'0'||ch>'9') ch=tc();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=tc();
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i,j,k; read(n); read(m);
for (i=1;i<=m;++i)
read(a[i]); f[1][1]=1.0;
for (i=2;i<=n;++i)
for (j=1;j<=i;++j)
for (k=1;k<=m;++k)
{
int x=a[k]%i?a[k]%i:i;
if (x>j) f[i][j]+=(double)f[i-1][i-x+j]/m;
if (x<j) f[i][j]+=(double)f[i-1][j-x]/m;
}
for (i=1;i<=n;++i)
printf("%.2lf%% ",f[n][i]*100.0);
return 0;
}

Luogu P2059 [JLOI2013]卡牌游戏的更多相关文章

  1. 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告

    P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...

  2. P2059 [JLOI2013]卡牌游戏

    题目描述 N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把 ...

  3. 洛谷P2059 [JLOI2013]卡牌游戏

    题目描述 N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把 ...

  4. P2059 [JLOI2013]卡牌游戏 概率DP

    link:https://www.luogu.org/problemnew/show/P2059 题意: 有n个人,类似约瑟夫环的形式踢人,但是报的数是不同的,是在给定的许多数中随机抽取,问最后第i个 ...

  5. 洛谷 P2059 [JLOI2013]卡牌游戏(概率dp)

    题面 洛谷 题解 \(f[i][j]\)表示有i个人参与游戏,从庄家(即1)数j个人获胜的概率是多少 \(f[1][1] = 1\) 这样就可以不用讨论淘汰了哪些人和顺序 枚举选庄家选那张牌, 枚举下 ...

  6. Luogu 2059 [JLOI2013]卡牌游戏 - 概率DP

    Solution 设状态 $F[i][j] $为 还剩余 $i$ 个人时, 第 $j$ 个人 的胜率. 边界: $F[1][1] = 1$(只剩下一个人了). 这样设置状态就能使 $i-1$ 个人的答 ...

  7. BZOJ_3191_[JLOI2013]卡牌游戏_概率DP

    BZOJ_3191_[JLOI2013]卡牌游戏_概率DP Description   N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随 ...

  8. bzoj千题计划202:bzoj3191: [JLOI2013]卡牌游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=3191 每个人获胜的概率只与其在排列中与庄家的相对位置有关 dp[i][j] 还剩i个人时,从庄家数第 ...

  9. [JLOI2013]卡牌游戏 概率DP

    [JLOI2013]卡牌游戏 概率DP 题面 \(dfs\)复杂度爆炸,考虑DP.发现决策时,我们只用关心当前玩家是从庄家数第几个玩家与当前抽到的牌是啥.于是设计状态\(f[i][j]\)表示有\(i ...

随机推荐

  1. Android--判断是否连接成功了指定wifi

    最近在做wifi的相关的东西,打印WifiInfo的时候 无意间发现一个参数,改参数可以查看是否连接成功了指定wifi,但是这是隐藏的,遂将其反射之.代码如下: //通过反射的方式去判断wifi是否已 ...

  2. spring 使用外部属性文件

    一.PropertyPlaceholderConfigurer spring提供的PropertyPlaceholderConfigurer实现类能够使Bean在配置时引用外部属性文件. Proper ...

  3. 洗礼灵魂,修炼python(17)--跨平台操作三剑客—os,os.path.sys模块

    os 1.作用: 因为客户基本都是使用不同的操作系统,在不同的系统下,要完成一个项目,那必须跨平台操作,而python本来就是一个跨平台的语言,而有了os模块,则不需要在意什么系统.并且os模块是用于 ...

  4. 自动化测试基础篇--Selenium Python环境搭建

    学习selenium python需要的工具: 1.浏览器 2.Python 3.Selenium 4.FireBug(Firefox) 5.chromedriver.IEDriverServer.g ...

  5. MySQL5.7 GTID学习笔记,[MySQL 5.6] GTID实现、运维变化及存在的bug

      GTID(global transaction identifier)是对于一个已提交事务的全局唯一编号,前一部分是server_uuid,后面一部分是执行事务的唯一标志,通常是自增的. 下表整理 ...

  6. 【PAT】B1084 外观数列(20 分)(纯C)

    第一层循环,用来循环计算第几个元素 第二层用来计算当前元素的下一个 #include<stdio.h> #include<string.h> char aaa[100000] ...

  7. Linux永久修改系统时间

    1.date 查看系统时间 2.hwclock --show 查看硬件的时间 3.hwclock --set --date '2017-08-16 17:17:00' 设置硬件时间为17年8月16日1 ...

  8. ECstore后台报表显示空白问题解决办法

    执行如下sql语句: INSERT INTO `sdb_ectools_analysis` (`id`, `service`, `interval`, `modify`) VALUES (1, 'b2 ...

  9. 5、爬虫系列之scrapy框架

    一 scrapy框架简介 1 介绍 (1) 什么是Scrapy? Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架,非常出名,非常强悍.所谓的框架就是一个已经被集成了各种功能(高性能 ...

  10. 兼容IE8及以上的常用css选择器

    p~ul//位于p元素后边的ul div>p div+p//紧接在 <div> 元素之后的所有 <p> 元素 [attribute]//[target]选择带有 targ ...