一道比较简单的概率DP

首先看到这种题目和数据范围,就要毫不犹豫地列DP方程:

我们令\(f_{i,j}\)表示还剩下i个人时编号为j的人的胜率,那么首先我们可以知道边界条件\(f_{1,1}=1\)

然后我们考虑多一个人的情况会是怎样。

我们先枚举还剩下\(i(2<=i<=n)\)个人,然后对于每一个人\(j(1<=j<=i)\)(注意这里是的\(j\)指的是在这\(i\)个人里的编号

然后枚举卡片\(k\),对于上面的数字\(a_k\)我们先得出这一轮会被淘汰的人的编号\(x\)。然后如果\(x\ne j\)那么就有转移:

  • \(f_{i,j}+=\frac{f_{i-1,i-x+j}}{m}(x>j)\)
  • \(f_{i,j}+=\frac{f_{i-1,j-x}}{m}(x<j)\)

然后就可以A了

CODE

#include<cstdio>
using namespace std;
const int N=55;
int a[N],n,m;
double f[N][N];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch=tc();
while (ch<'0'||ch>'9') ch=tc();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=tc();
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i,j,k; read(n); read(m);
for (i=1;i<=m;++i)
read(a[i]); f[1][1]=1.0;
for (i=2;i<=n;++i)
for (j=1;j<=i;++j)
for (k=1;k<=m;++k)
{
int x=a[k]%i?a[k]%i:i;
if (x>j) f[i][j]+=(double)f[i-1][i-x+j]/m;
if (x<j) f[i][j]+=(double)f[i-1][j-x]/m;
}
for (i=1;i<=n;++i)
printf("%.2lf%% ",f[n][i]*100.0);
return 0;
}

Luogu P2059 [JLOI2013]卡牌游戏的更多相关文章

  1. 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告

    P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...

  2. P2059 [JLOI2013]卡牌游戏

    题目描述 N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把 ...

  3. 洛谷P2059 [JLOI2013]卡牌游戏

    题目描述 N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把 ...

  4. P2059 [JLOI2013]卡牌游戏 概率DP

    link:https://www.luogu.org/problemnew/show/P2059 题意: 有n个人,类似约瑟夫环的形式踢人,但是报的数是不同的,是在给定的许多数中随机抽取,问最后第i个 ...

  5. 洛谷 P2059 [JLOI2013]卡牌游戏(概率dp)

    题面 洛谷 题解 \(f[i][j]\)表示有i个人参与游戏,从庄家(即1)数j个人获胜的概率是多少 \(f[1][1] = 1\) 这样就可以不用讨论淘汰了哪些人和顺序 枚举选庄家选那张牌, 枚举下 ...

  6. Luogu 2059 [JLOI2013]卡牌游戏 - 概率DP

    Solution 设状态 $F[i][j] $为 还剩余 $i$ 个人时, 第 $j$ 个人 的胜率. 边界: $F[1][1] = 1$(只剩下一个人了). 这样设置状态就能使 $i-1$ 个人的答 ...

  7. BZOJ_3191_[JLOI2013]卡牌游戏_概率DP

    BZOJ_3191_[JLOI2013]卡牌游戏_概率DP Description   N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随 ...

  8. bzoj千题计划202:bzoj3191: [JLOI2013]卡牌游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=3191 每个人获胜的概率只与其在排列中与庄家的相对位置有关 dp[i][j] 还剩i个人时,从庄家数第 ...

  9. [JLOI2013]卡牌游戏 概率DP

    [JLOI2013]卡牌游戏 概率DP 题面 \(dfs\)复杂度爆炸,考虑DP.发现决策时,我们只用关心当前玩家是从庄家数第几个玩家与当前抽到的牌是啥.于是设计状态\(f[i][j]\)表示有\(i ...

随机推荐

  1. JdbcTemplate学习笔记(更新插入删除等)

    1.使用JdbcTemplate的execute()方法执行SQL语句 jdbcTemplate.execute("CREATE TABLE USER (user_id integer, n ...

  2. mysql8 :客户端连接caching-sha2-password问题

    在安装mysql8的时候如果选择了密码加密,之后用客户端连接比如navicate,会提示客户端连接caching-sha2-password,是由于客户端不支持这种插件,可以通过如下方式进行修改: # ...

  3. sqlserver序列定时初始化

    1.创建序列 2.序列初始化存储过程 create procedure proDemo as begin alter sequence dbo.序列名 restart with 0; end 3.创建 ...

  4. 【PAT】B1039 到底买不买(20)(20 分)

    /* 琢磨了很久,当时还没做几道题,参考了柳婼的思路 */ #include<stdio.h> #include<string.h> char arr[1000]={'\0'} ...

  5. spark-Scala

    一.spark的特点 1.快速的 2.容易使用的 3.通用的 4.开放的 二.spark组件 sparkCore sparkSQL sparkStreaming MLibmachielearning ...

  6. 【Beta Scrum】冲刺! 2/5

    1. 今日完成情况 人员 学号 分工 是否完成 完成情况 胡武成 031502610 学习java后端登录验证方式,尝试编写登录api N 刚学会springmvc登录token拦截,准备明天登录注册 ...

  7. PyQt5 + QtDesigner

    看到网上蛮多介绍做界面开发时可以借助QtDesigner进行快速完成布局,搞了半天在电脑里却找不到该工具,网上查了一下,原来是要额外安装一个pyqt5的工具包,下面结合亲身一步一步操作记录下来,也方便 ...

  8. [Jenkins] 如何修改jenkins上的环境变量

    现象 当本地的环境变量发生变化时,在jenkins 构建时里面访问的环境变量仍是之前旧的(未更新的)导致构建出现错误,比如我以我所遇到的问题进行简单写下,下面例子中我是涉及到修改 PYTHONPATH ...

  9. POI写Word换行

    本文旨在描述基于变量替换生成Word doc文件的换行方式.Word换行主要有两大类,一类是表格单元格文本的换行,另一类是表格之外的文本的换行.对于表格外的文本我们可以使用“\r”或者“(char)1 ...

  10. Android之activity总结

    http://www.cnblogs.com/lyp3314/archive/2011/11/10/2244971.html 一.什么是activity Activity 是用户接口程序,原则上它会提 ...