【欧拉函数】

在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler’s totient function、φ函数、欧拉商数等。 例如φ(8)=4,因为1,3,5,7均和8互质。 从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明。

【证明】: 
设A, B, C是跟m, n, mn互质的数的集,据中国剩余定理,A*B和C可建立一一对应的关系。因此φ(n)的值使用算术基本定理便知, 
若 
n= ∏p^(α(下标p))p|n 
则φ(n)=∏(p-1)p^(α(下标p)-1)=n∏(1-1/p) 
p|n p|n 
例如φ(72)=φ(2^3×3^2)=(2-1)2^(3-1)×(3-1)3^(2-1)=24,与欧拉定理、费马小定理的关系,对任何两个互质的正整数a, m, m>=2有a^φ(m)≡1(mod m)即欧拉定理:当m是质数p时,此式则为:a^(p-1)≡1(mod m)即费马小定理。(慢慢理解~~) 
代码实现:(写一遍欧拉函数,加深印象!) 
在线版:

 #include <bits/stdc++.h>
using namespace std;
int eular(int n)
{
int res=;
for(int i=;i*i<=n;i++){
if(n%i==){
n/=i,res*=i-;//保证i一定是素数
while(n%i==)
n/=i,res*=i;
}
}
if(n>)
res*=n-;
return res;
}
int main()
{
int n;
while(scanf("%d",&n)!=EOF){
printf("%d\n",eular(n));
}
return ;
}

预处理:

 #include <bits/stdc++.h>
using namespace std;
const int N=le5+;
int phi[N];
void pre_eular()
{
phi[]=;
for(int i=; i<N; i++)
{
if(!phi[i])
{
for(int j=i; j<N; j+=i)
{
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
}
}

欧拉函数的和:phi_sum(n) = the sum of phi(i) where gcd(i,n) = 1 and 1 <= i <= n 
1)phi_sum(n) = n * phi(n) / 2 (n >= 2) 
2)phi_sum(n) = 1 (n == 1)

线性筛:该算法在可在线性时间内筛素数的同时求出所有数的欧拉函数。

需要用到如下性质(p为质数):

. phi(p)=p-   因为质数p除了1以外的因数只有p,故1至p的整数只有p与p不互质

. 如果i mod p = , 那么phi(i * p)=p * phi(i)  证明如下

(上述证明存在bug。。感谢@PrimaryOIer指教)

上面的过程证明了从区间[,i]->[i+,i+i],若整数n不与i互质,n+i依然与i不互质。下面给出另一个证明:若整数n与i互质,n+i与i依然互质

.若i mod p ≠,  那么phi(i * p)=phi(i) * (p-)

    i mod p 不为0且p为质数, 所以i与p互质, 那么根据欧拉函数的积性phi(i * p)=phi(i) * phi(p) 其中phi(p)=p-1即第一条性质
 #include<iostream>
#include<cstdio>
#define N 40000
using namespace std;
int n;
int phi[N+],prime[N+],tot,ans; //phi - 欧拉函数的值 , prime - 素因子的值
bool mark[N+];
void getphi()
{
int i,j;
phi[]=;
for(i=;i<=N;i++)//相当于分解质因式的逆过程
{
if(!mark[i])
{
prime[++tot]=i;//筛素数的时候首先会判断i是否是素数。
phi[i]=i-;//当 i 是素数时 phi[i]=i-1
}
for(j=;j<=tot;j++)
{
if(i*prime[j]>N) break;
mark[i*prime[j]]=;//确定i*prime[j]不是素数
if(i%prime[j]==)//接着我们会看prime[j]是否是i的约数
{
phi[i*prime[j]]=phi[i]*prime[j];break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-);//其实这里prime[j]-1就是phi[prime[j]],利用了欧拉函数的积性
}
}
}
int main()
{
getphi();
}

欧拉函数(小于或等于n的数中与n互质的数的数目)&& 欧拉函数线性筛法的更多相关文章

  1. C. Book Reading 求在[1,n]中的数中,能整除m的数 的个位的和

    C. Book Reading time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  2. 证明RSA算法在明文和公私钥中N不互质情况下仍然成立

    关于RSA的基础过程介绍 下文中的 k 代表自然数常数,不同句子,公式中不一定代表同一个数 之前接触RSA,没有过多的思考证明过程,今天有感而发,推到了一遍 假设公钥 (e, N) , 私钥 (d, ...

  3. hdu-4135 Co-prime---容斥定理经典&&求1-m中与n互质的数目

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4135 题目大意: 求区间[a, b]中与N互质的数目. 解题思路: 首先对n求出所有素因子. 对于区 ...

  4. 一个简单的公式——求小于N且与N互质的数的和

    首先看一个简单的东西. 若$gcd(i,n)=1$,则有$gcd(n-i,n)=1$ 于是在小于$n$且与$n$互质的数中,$i$与$n-i$总是成对存在,且相加等于$n$. 考虑$i=n-i$的特殊 ...

  5. 求N以内与N互质的数的和

    题目连接 /* 求所有小于N且与N不互质的数的和. 若:gcd(n,m)=1,那么gcd(n,n-m)=1; sum(n)=phi(n)*n/2; //sum(n)为小于n的所有与n互质的数的和 // ...

  6. poj2773求第K个与m互质的数

    //半年前做的,如今回顾一下,还是有所收货的,数的唯一分解,.简单题. #include<iostream> #include<cstring> using namespace ...

  7. 求小于n且与n互质的数的个数

    int eu(int n){ int ans=n; for(int i=2;i*i<=n;i++) { if(n%i==0) { ans=ans/i*(i-1); while(n%i==0)n/ ...

  8. BOJ 2773 第K个与m互质的数

    算法是关键,得出1-m内的互质数,然后类推计算即可.下面有详细说明. #include<iostream> #include<cstring> using namespace ...

  9. 求1-n 中与 m 互质的素因子 (容斥原理)

    ll prime[100]; ll cnt; void getprime(){ cnt = 0; ll num = m; for(ll i = 2; i*i <= m; i++){ // sqr ...

随机推荐

  1. 兼容多种模块规范(AMD,CMD,Node)的代码

    在JavaScript模块化开发中,为了让同一个模块可以运行在前后端,以及兼容多种模块规范(AMD,CMD,Node),类库开发者需要将类库代码包装在一个闭包内. AMD规范 AMD,即“异步模块定义 ...

  2. Python多继承

    # -*- coding: utf-8 -*- """ Created on Tue Nov 13 16:56:03 2018 @author: zhen "& ...

  3. Spring Boot 中配置文件application.properties使用

    一.配置文档配置项的调用(application.properties可放在resources,或者resources下的config文件夹里) package com.my.study.contro ...

  4. [20171206]rman与truncate2.txt

    [20171206]rman与truncate2.txt --//上午测试发现truncate的表在做rman备份时还要做8个extents的备份.--//不知道自己的猜测是否正确,选择一个使用UNI ...

  5. 【PAT】B1042 字符统计(20 分)

    /* 15分的题很简单,但是自己写的时候在输入数据时没有考虑好下标 另外有忘记了输入字符时考虑是否有\n */ #include<stdio.h> #include<algorith ...

  6. linux运行apache出现403错误

    1.文档权限问题,这是linux操作系统下经常会遇到的问题,需要使用chmod的指令把网站所在目录的权限提升到755.2.SElinux,开启它也会导致403错误的产生. 查看SELinux状态:1. ...

  7. Word中类似正则匹配的查找替换通配符的使用详解

    一.Word查找栏代码&通配符一览表 序号 清除使用通配符复选框 勾选使用通配符复选框 特殊字符 代码 特殊字符 代码or通配符 1 任意单个字符 ^? 任意单个字符 ? 2 任意数字 ^# ...

  8. Find a way

    Pass a year learning in Hangzhou, yifenfei arrival hometown Ningbo at finally. Leave Ningbo one year ...

  9. [android]android Task 任务 简介

    http://blog.csdn.net/guomeijuan916/article/details/8121468 关于Android中的组件和应用,之前涉及,大都是静态的概念.而当一个应用运行起来 ...

  10. 最近的linux工作记录

    最近的linux工作记录 最近公司走了一些同事,部分服务器交到了我的手里,总结一些常用的操作 注:大写的字符串一般是用来占位,需要替换 创建账户和使用密钥对登陆 1,账户系列 useradd 选项 用 ...