【欧拉函数】

在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler’s totient function、φ函数、欧拉商数等。 例如φ(8)=4,因为1,3,5,7均和8互质。 从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明。

【证明】: 
设A, B, C是跟m, n, mn互质的数的集,据中国剩余定理,A*B和C可建立一一对应的关系。因此φ(n)的值使用算术基本定理便知, 
若 
n= ∏p^(α(下标p))p|n 
则φ(n)=∏(p-1)p^(α(下标p)-1)=n∏(1-1/p) 
p|n p|n 
例如φ(72)=φ(2^3×3^2)=(2-1)2^(3-1)×(3-1)3^(2-1)=24,与欧拉定理、费马小定理的关系,对任何两个互质的正整数a, m, m>=2有a^φ(m)≡1(mod m)即欧拉定理:当m是质数p时,此式则为:a^(p-1)≡1(mod m)即费马小定理。(慢慢理解~~) 
代码实现:(写一遍欧拉函数,加深印象!) 
在线版:

 #include <bits/stdc++.h>
using namespace std;
int eular(int n)
{
int res=;
for(int i=;i*i<=n;i++){
if(n%i==){
n/=i,res*=i-;//保证i一定是素数
while(n%i==)
n/=i,res*=i;
}
}
if(n>)
res*=n-;
return res;
}
int main()
{
int n;
while(scanf("%d",&n)!=EOF){
printf("%d\n",eular(n));
}
return ;
}

预处理:

 #include <bits/stdc++.h>
using namespace std;
const int N=le5+;
int phi[N];
void pre_eular()
{
phi[]=;
for(int i=; i<N; i++)
{
if(!phi[i])
{
for(int j=i; j<N; j+=i)
{
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
}
}

欧拉函数的和:phi_sum(n) = the sum of phi(i) where gcd(i,n) = 1 and 1 <= i <= n 
1)phi_sum(n) = n * phi(n) / 2 (n >= 2) 
2)phi_sum(n) = 1 (n == 1)

线性筛:该算法在可在线性时间内筛素数的同时求出所有数的欧拉函数。

需要用到如下性质(p为质数):

. phi(p)=p-   因为质数p除了1以外的因数只有p,故1至p的整数只有p与p不互质

. 如果i mod p = , 那么phi(i * p)=p * phi(i)  证明如下

(上述证明存在bug。。感谢@PrimaryOIer指教)

上面的过程证明了从区间[,i]->[i+,i+i],若整数n不与i互质,n+i依然与i不互质。下面给出另一个证明:若整数n与i互质,n+i与i依然互质

.若i mod p ≠,  那么phi(i * p)=phi(i) * (p-)

    i mod p 不为0且p为质数, 所以i与p互质, 那么根据欧拉函数的积性phi(i * p)=phi(i) * phi(p) 其中phi(p)=p-1即第一条性质
 #include<iostream>
#include<cstdio>
#define N 40000
using namespace std;
int n;
int phi[N+],prime[N+],tot,ans; //phi - 欧拉函数的值 , prime - 素因子的值
bool mark[N+];
void getphi()
{
int i,j;
phi[]=;
for(i=;i<=N;i++)//相当于分解质因式的逆过程
{
if(!mark[i])
{
prime[++tot]=i;//筛素数的时候首先会判断i是否是素数。
phi[i]=i-;//当 i 是素数时 phi[i]=i-1
}
for(j=;j<=tot;j++)
{
if(i*prime[j]>N) break;
mark[i*prime[j]]=;//确定i*prime[j]不是素数
if(i%prime[j]==)//接着我们会看prime[j]是否是i的约数
{
phi[i*prime[j]]=phi[i]*prime[j];break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-);//其实这里prime[j]-1就是phi[prime[j]],利用了欧拉函数的积性
}
}
}
int main()
{
getphi();
}

欧拉函数(小于或等于n的数中与n互质的数的数目)&& 欧拉函数线性筛法的更多相关文章

  1. C. Book Reading 求在[1,n]中的数中,能整除m的数 的个位的和

    C. Book Reading time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  2. 证明RSA算法在明文和公私钥中N不互质情况下仍然成立

    关于RSA的基础过程介绍 下文中的 k 代表自然数常数,不同句子,公式中不一定代表同一个数 之前接触RSA,没有过多的思考证明过程,今天有感而发,推到了一遍 假设公钥 (e, N) , 私钥 (d, ...

  3. hdu-4135 Co-prime---容斥定理经典&&求1-m中与n互质的数目

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4135 题目大意: 求区间[a, b]中与N互质的数目. 解题思路: 首先对n求出所有素因子. 对于区 ...

  4. 一个简单的公式——求小于N且与N互质的数的和

    首先看一个简单的东西. 若$gcd(i,n)=1$,则有$gcd(n-i,n)=1$ 于是在小于$n$且与$n$互质的数中,$i$与$n-i$总是成对存在,且相加等于$n$. 考虑$i=n-i$的特殊 ...

  5. 求N以内与N互质的数的和

    题目连接 /* 求所有小于N且与N不互质的数的和. 若:gcd(n,m)=1,那么gcd(n,n-m)=1; sum(n)=phi(n)*n/2; //sum(n)为小于n的所有与n互质的数的和 // ...

  6. poj2773求第K个与m互质的数

    //半年前做的,如今回顾一下,还是有所收货的,数的唯一分解,.简单题. #include<iostream> #include<cstring> using namespace ...

  7. 求小于n且与n互质的数的个数

    int eu(int n){ int ans=n; for(int i=2;i*i<=n;i++) { if(n%i==0) { ans=ans/i*(i-1); while(n%i==0)n/ ...

  8. BOJ 2773 第K个与m互质的数

    算法是关键,得出1-m内的互质数,然后类推计算即可.下面有详细说明. #include<iostream> #include<cstring> using namespace ...

  9. 求1-n 中与 m 互质的素因子 (容斥原理)

    ll prime[100]; ll cnt; void getprime(){ cnt = 0; ll num = m; for(ll i = 2; i*i <= m; i++){ // sqr ...

随机推荐

  1. Android 打开文件或文件夹777权限

    打开777权限 public class SystemManager extends Activity { public static boolean RootCommand(String comma ...

  2. Kotlin入门(5)字符串及其格式化

    上一篇文章介绍了数组的声明和操作,包括字符串数组的用法.注意到Kotlin的字符串类也叫String,那么String在Java和Kotlin中的用法有哪些差异呢?这便是本文所要阐述的内容了. 首先要 ...

  3. mv,rm等命令出现unrecognized option提示的解决方法

    出现这个提示,一般是由于命令操作的文件名最前面有"--"字符, 让命令误以为是--开头的长选项 解决: 命令后加上"--", shell把 -- 之后的参数当做 ...

  4. linux networking

    ip route解读 default via 192.168.1.1 dev wlan0 dev wlan0 proto kernel scope link src 192.168.1.100 htt ...

  5. Python零基础学习系列之三--Python编辑器选择

    上一篇文章记录了怎么安装Python环境,同时也成功的在电脑上安装好了Python环境,可以正式开始自己的编程之旅了.但是现在又有头疼的事情,该用什么来写Python程序呢,该用什么来执行Python ...

  6. 将mssql数据库高版本迁移到低版本

    将mssql数据库高版本迁移到低版本 在低版本目标数据库中创建目标空数据库[TargetDb] ,注意新建数据库即可,不要创建任何表 在低版本数据库中,选中[服务器对象=>链接服务器] 右键[新 ...

  7. webApi core2 DI通过代码来获取容器里面已注入的对象

    请求服务 来自 HttpContext 的一次 ASP.NET 请求中可用的服务通过 RequestServices 集合公开的. 请求服务将你配置的服务和请求描述为应用程序的一部分.当你的对象指定依 ...

  8. UITableViewCell 获取当前位置

    CGRect rectInTableView = [tableView rectForRowAtIndexPath:indexPath]; CGRect rectInSuperview = [tabl ...

  9. [MapReduce_add_5] MapReduce 实现标签的生成与聚合

    0. 说明 MapReduce 实现标签的生成与聚合 介绍 && 流程图 && 程序编写 1. 介绍 [1.1 原始有效数据] 86913510 {"revi ...

  10. Postgresql - jsonb_pretty & dateStyle

    1. SHOW datestyle; DateStyle ----------- ISO, MDY(1 row) INSERT INTO container VALUES ('13/01/2010') ...