BZOJ2839:集合计数(容斥,组合数学)
Description
Input
Output
Sample Input
Sample Output
HINT
【样例说明】
假设原集合为{A,B,C}
则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}
【数据说明】
对于100%的数据,1≤N≤1000000;0≤K≤N;
Solution
首先考虑一下容斥
设$f(k)$表示选出一些集合使它们交集大小至少为$k$的方案数。
那么$f(k)=C_n^k \times (2^{2^{n-k}}-1)$
这玩意儿怎么理解呢?也就是先把那$i$个数确定下来,然后有$2^{n-k}$个集合可以包含那$k$个数。这些集合要么选要么不选,但不能一个都不选,也就是不能为空集。所以有$2^{2^{n-k}}-1$种选择方法。
那么容斥系数呢?可以发现当计算交集至少为$k$的方案时候,交集至少为$j$的方案($j>k$)会被计算$C_j^k$次。
也就是说,
$f(k)$的系数为$1$。
$f(k+1)$的系数为$-C_{k+1}^k$。
$f(k+2)$的系数为$-C_{k+2}^k+C_{k+1}^k\times C_{k+2}^{k+1}=C_{k+2}^k$
为什么$f(k+2)$能那么推呢……因为$C_N^M\times C_M^S=C_N^S\times C_{N-S}^{N-M}$
搞到现在基本可以组合计数搞搞出解了,至于那个大的一比的$2^{2^{n-k}}$,根据欧拉定理直接指数取模$φ(MOD)$就好了,显然$φ(MOD)=MOD-1$。
Code
#include<iostream>
#include<cstdio>
#define N (1000009)
#define LL long long
#define MOD (1000000007)
using namespace std; LL n,k,ans,inv[N],fac[N],facinv[N],p[N]; void Init()
{
inv[]=fac[]=facinv[]=p[]=;
for (int i=; i<=n; ++i)
{
if (i!=) inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD;
fac[i]=fac[i-]*i%MOD; facinv[i]=facinv[i-]*inv[i]%MOD;
p[i]=p[i-]*%(MOD-);
}
} LL Qpow(LL a,LL b)
{
LL ans=;
while (b)
{
if (b&) ans=ans*a%MOD;
a=a*a%MOD; b>>=;
}
return ans;
} LL C(LL n,LL m)
{
if (n<m) return ;
return fac[n]*facinv[m]%MOD*facinv[n-m]%MOD;
} int main()
{
scanf("%lld%lld",&n,&k);
Init();
for (int i=k,j=; i<=n; ++i,j=-j)
ans+=j*C(n,i)*(Qpow(,p[n-i])-)%MOD*C(i,k)%MOD;
ans=(ans%MOD+MOD)%MOD;
printf("%lld\n",ans);
}
BZOJ2839:集合计数(容斥,组合数学)的更多相关文章
- bzoj2839: 集合计数 容斥+组合
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 523 Solved: 287[Submit][Status][Discuss] ...
- BZOJ2839 集合计数 容斥
题目描述(权限题qwq) 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模100000000 ...
- bzoj 2839 集合计数 容斥\广义容斥
LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...
- 2015 asia xian regional F Color (容斥 + 组合数学)
2015 asia xian regional F Color (容斥 + 组合数学) 题目链接http://codeforces.com/gym/100548/attachments Descrip ...
- [BZOJ2839]:集合计数(组合数学+容斥)
题目传送门 题目描述 .(是质数喔~) 输入格式 一行两个整数N,K. 输出格式 一行为答案. 样例 样例输入: 3 2 样例输出: 样例说明 假设原集合为{A,B,C} 则满足条件的方案为:{AB, ...
- bzoj2839 集合计数(容斥)
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 883 Solved: 490[Submit][Status][Discuss] ...
- bzoj2839 集合计数(容斥+组合)
集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...
- BZOJ2839 : 集合计数 (广义容斥定理)
题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...
- bzoj2839 集合计数 组合计数 容斥原理|题解
集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...
随机推荐
- 使用HtmlAgilityPack抓取Ethereum Tokens信息
使用HtmlAgilityPack抓取Ethereum Tokens信息 class Program { static void Main(string[] args) { try { for (in ...
- WebForm 【复合控件】
一 复合控件(取值,赋值用法相近) RadioButtonList --单选按钮 (一组列表) <asp:RadioButtonList ID="RadioButtonL ...
- SQL Server T—SQL 语句【建 增 删 改】(建外键)
一 创建数据库 如果多条语句要一起执行,那么在每条语句之后需要加 go 关键字 建库 : create database 数据库名 create database Dat ...
- async、await正确姿势
摘要 async.await是在C# 5.0之后引入的一种简化异步操作的方式.使用它们之后,可以使我们的编写异步操作更加方便快捷,维护以及阅读起来更方便. 一个例子 async.await虽然简化了我 ...
- Spring Boot项目使用maven-assembly-plugin根据不同环境打包成tar.gz或者zip
spring-boot-assembly 在spring boot项目中使用maven profiles和maven assembly插件根据不同环境打包成tar.gz或者zip 将spring bo ...
- Mybatis标签bind用法
Mybatis使用bind元素进行模糊查询,不用在乎数据库是mysql还是oracle从而提高可移植性 使用bind元素传递多个参数 public List<Student> findSt ...
- Android逆向 Android平台虚拟机
一 Dalvik:是Google开发运行在Android平台的Java虚拟机, Android程序编译后会生成dex文件.Dalvik虚拟机下运行Java时,要将字节码通过即时编译器(just in ...
- [iOS] 输入框高度随输入内容变化
一般,类似聊天软件的输入框默认都是显示一行的,在用户输入过程中根据输入文字的内容来改变输入框的高度,以便显示全部文字.像微信,QQ的输入框就是这样的.那么这个效果应该怎么实现呢? 新博客:wosson ...
- ConstraintLayout (约束布局)属性详情
本文部分内容来自于网络,点击浏览原文 app:layout_constraintLeft_toLeftOf //Constrains the left side of a child to the l ...
- 8.1、包,__init__.py,
包: 为了组织好模块,将多个模块组合为一个包,所以包用于存放python模块 包通常是一个文件夹,当文件夹当作包使用时,文件夹需要包含__init__.py文件 __init__.py的内容可以为空, ...