Description

一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)

Input

一行两个整数N,K

Output

一行为答案。

Sample Input

3 2

Sample Output

6

HINT

【样例说明】

假设原集合为{A,B,C}

则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}

【数据说明】

对于100%的数据,1≤N≤1000000;0≤K≤N;

Solution

首先考虑一下容斥
设$f(k)$表示选出一些集合使它们交集大小至少为$k$的方案数。
那么$f(k)=C_n^k \times (2^{2^{n-k}}-1)$
这玩意儿怎么理解呢?也就是先把那$i$个数确定下来,然后有$2^{n-k}$个集合可以包含那$k$个数。这些集合要么选要么不选,但不能一个都不选,也就是不能为空集。所以有$2^{2^{n-k}}-1$种选择方法。
那么容斥系数呢?可以发现当计算交集至少为$k$的方案时候,交集至少为$j$的方案($j>k$)会被计算$C_j^k$次。
也就是说,
$f(k)$的系数为$1$。
$f(k+1)$的系数为$-C_{k+1}^k$。
$f(k+2)$的系数为$-C_{k+2}^k+C_{k+1}^k\times C_{k+2}^{k+1}=C_{k+2}^k$
为什么$f(k+2)$能那么推呢……因为$C_N^M\times C_M^S=C_N^S\times C_{N-S}^{N-M}$
搞到现在基本可以组合计数搞搞出解了,至于那个大的一比的$2^{2^{n-k}}$,根据欧拉定理直接指数取模$φ(MOD)$就好了,显然$φ(MOD)=MOD-1$。

Code

 #include<iostream>
#include<cstdio>
#define N (1000009)
#define LL long long
#define MOD (1000000007)
using namespace std; LL n,k,ans,inv[N],fac[N],facinv[N],p[N]; void Init()
{
inv[]=fac[]=facinv[]=p[]=;
for (int i=; i<=n; ++i)
{
if (i!=) inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD;
fac[i]=fac[i-]*i%MOD; facinv[i]=facinv[i-]*inv[i]%MOD;
p[i]=p[i-]*%(MOD-);
}
} LL Qpow(LL a,LL b)
{
LL ans=;
while (b)
{
if (b&) ans=ans*a%MOD;
a=a*a%MOD; b>>=;
}
return ans;
} LL C(LL n,LL m)
{
if (n<m) return ;
return fac[n]*facinv[m]%MOD*facinv[n-m]%MOD;
} int main()
{
scanf("%lld%lld",&n,&k);
Init();
for (int i=k,j=; i<=n; ++i,j=-j)
ans+=j*C(n,i)*(Qpow(,p[n-i])-)%MOD*C(i,k)%MOD;
ans=(ans%MOD+MOD)%MOD;
printf("%lld\n",ans);
}

BZOJ2839:集合计数(容斥,组合数学)的更多相关文章

  1. bzoj2839: 集合计数 容斥+组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 523  Solved: 287[Submit][Status][Discuss] ...

  2. BZOJ2839 集合计数 容斥

    题目描述(权限题qwq) 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模100000000 ...

  3. bzoj 2839 集合计数 容斥\广义容斥

    LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...

  4. 2015 asia xian regional F Color (容斥 + 组合数学)

    2015 asia xian regional F Color (容斥 + 组合数学) 题目链接http://codeforces.com/gym/100548/attachments Descrip ...

  5. [BZOJ2839]:集合计数(组合数学+容斥)

    题目传送门 题目描述 .(是质数喔~) 输入格式 一行两个整数N,K. 输出格式 一行为答案. 样例 样例输入: 3 2 样例输出: 样例说明 假设原集合为{A,B,C} 则满足条件的方案为:{AB, ...

  6. bzoj2839 集合计数(容斥)

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 883  Solved: 490[Submit][Status][Discuss] ...

  7. bzoj2839 集合计数(容斥+组合)

    集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出     题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...

  8. BZOJ2839 : 集合计数 (广义容斥定理)

    题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...

  9. bzoj2839 集合计数 组合计数 容斥原理|题解

    集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...

随机推荐

  1. [android] 手机卫士号码归属地查询完成

    正则表达式完成号码验证, ^以某开头,[] 字符集(匹配中括号里面的任意字符),\d是任意一个数字,{n}表示出现了多少次,$结尾 手机号的正则 ^1[34568]\d{9}$,以1开头,第二个数字是 ...

  2. 字符串按首字母分组并ToDictionary的实现

    这是一道面试题目,要求实现字符串按首字母分组并ToDictionary输出,当时没有做出来,后面研究了一下,现在将这道题的几种实现方式记录下来. 首先初始化数据源,是一个List<string& ...

  3. Android - fragment Manager

    fragment基本使用: http://www.cnblogs.com/qlky/p/5415679.html Fragmeng优点 Fragment可以使你能够将activity分离成多个可重用的 ...

  4. 如何在idea中设置Tomcat虚拟路径

    设置项目的根路径: 设置指定文件的在Tomcat中的虚拟路径: 代码: String fileName = MyFileUtil.getFileName(uploadFileName); File f ...

  5. wagon-maven-plugin实现自动打包部署到服务器

    1.在maven中添加依赖 <!-- https://mvnrepository.com/artifact/org.codehaus.mojo/wagon-maven-plugin --> ...

  6. JSON 解析工具的封装(FastJSON-->Java)

    作者QQ:1095737364    QQ群:123300273     欢迎加入! 1.添加依赖包 <dependency> <groupId>com.alibaba< ...

  7. cmd--登录mysql

    cmd,Windows 命令提示符(cmd.exe)是 Windows NT 下的一个用于运行 Windows 控制面板程序或某些 DOS 程序的shell程序:或在 Windows CE 下只用于运 ...

  8. 【js实例】Array类型的9个数组方法,Date类型的41个日期方法,Function类型

    前文提要:[js实例]js中的5种基本数据类型和9种操作符 Array类型的9个数组方法 Array中有9个数组方法: 1.检测数组 2.转换方法 3.栈方法 4.队列方法 5.冲排序方法6.操作方法 ...

  9. OSGI企业应用开发(十三)OSGI Web应用开发(二)

    上篇文章介绍了OSGI Web应用的两种开发模式,并把Jetty应用服务器以Bundle的形式整合到Equinox容器中,已这种模式开发Web应用,所有的应用程序资源,例如Servlet.JSP.HT ...

  10. flutter 监控返回键

    return new WillPopScope( child: Scaffold( body: new Center( child: new Column( children: <Widget& ...