题意:给定序列,每次修改一个值,求前缀最大值的个数。

解:线段树经典应用。

每个节点维护最大值和该区间前缀最大值个数。

发现我们不用下传标记,只需要合并区间。

需要实现一个函数int ask([l r] lm)求出区间[l r]中前一个数是lm时前缀最大值个数。

那么当lm >= large[ls]时,return ask([mid r] lm)

这个很好理解,左子区间的所有数都不会成为前缀最大值。

当lm < large[ls]时,return ask([l mid] lm) + (sum[o] - sum[ls])

这个注意,不是sum[rs]因为sum[rs]的意义是从0开始,而这个的前面会有large[ls]挡着,所以是sum[o] - sum[ls]

修改的时候先一路到底把large值改了。然后return的时候把沿途区间都更新。

具体来说就是sum[o] = ask([l r] 0)...等等,好像有问题。

lm < large[ls]的时候,求值是要调用sum[o]的,这不就循环调用导致出错了吗?

所以写成sum[o] = sum[ls] + ask([mid r] large[ls])即可。

本题不用建树。需要建树的时候就跟修改类似的写法即可。

 #include <cstdio>
#include <algorithm> const int N = ; double a[N], large[N << ];
int n, sum[N << ]; int ask(int l, int r, int o, double lm) {
if(l == r) {
return (lm < a[r]);
}
int mid = (l + r) >> ;
if(lm > large[o << ]) {
return ask(mid + , r, o << | , lm);
}
else {
return sum[o] - sum[o << ] + ask(l, mid, o << , lm);
}
} void change(int p, double v, int l, int r, int o) {
if(l == r) {
large[o] = v;
sum[o] = ;
return;
}
int mid = (l + r) >> ;
if(p <= mid) {
change(p, v, l, mid, o << );
}
else {
change(p, v, mid + , r, o << | );
}
large[o] = std::max(large[o << ], large[o << | ]);
sum[o] = sum[o << ] + ask(mid + , r, o << | , large[o << ]);
return;
} int main() {
int m;
scanf("%d%d", &n, &m);
for(int i = , x, y; i <= m; i++) {
scanf("%d%d", &x, &y);
a[x] = (double)(y) / x;
change(x, a[x], , n, );
printf("%d\n", sum[]);
} return ;
}

AC代码

洛谷P4198 楼房重建的更多相关文章

  1. 洛谷P4198 楼房重建 (分块)

    洛谷P4198 楼房重建 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题, ...

  2. 洛谷 P4198 楼房重建 题解

    题面 首先你要知道题问的是什么:使用一种数据结构,动态地维护以1为起点地最长上升子序列(把楼房的高度转化成斜率地序列)的长度: 怎么做?线段树! 我们在线段树上维护两个东西:1.这个区间内斜率的最大值 ...

  3. 洛谷P4198 楼房重建 单调栈+线段树

    正解:单调栈+线段树 解题报告: 传送门! 首先考虑不修改的话就是个单调栈板子题昂,这个就是 然后这题的话,,,我怎么记得之前考试好像有次考到了类似的题目昂,,,?反正我总觉着这方法似曾相识的样子,, ...

  4. 洛谷P4198 楼房重建(线段树)

    题意 题目链接 Sol 别问我为什么发两遍 就是为了骗访问量 这个题的线段树做法,,妙的很 首先一个显然的结论:位置\(i\)能被看到当且仅当\(\frac{H_k}{k} < \frac{H_ ...

  5. 洛谷 P4198 楼房重建

    思路 此题可转化为以下模型 给定序列\(a[1...n]\),支持单点修改,每次求区间单调栈大小 \(n,Q\le 10^5\) 区间单调栈是什么呢?对于一个区间,建立一个栈,首先将第一个元素入栈,从 ...

  6. 洛谷 P4198 楼房重建 线段树维护单调栈

    P4198 楼房重建 题目链接 https://www.luogu.org/problemnew/show/P4198 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上 ...

  7. P4198 楼房重建

    P4198 楼房重建 集中写博客= = 首先把高度变成斜率 然后就比较玄学了,首先用线段树维护一个区间的斜率最大值,和只看这个区间时能看见的楼房个数ans 然后更新时先更新max,再处理神奇的ans ...

  8. 洛谷P1119-灾后重建-floyd算法

    洛谷P1119-灾后重建 题目描述 给出\(B\)地区的村庄数NN,村庄编号从\(0\)到\(N-1\),和所有\(M\)条公路的长度,公路是双向的. 给出第\(i\)个村庄重建完成的时间\(t_i\ ...

  9. 洛谷 P3905 道路重建

    题目描述 从前,在一个王国中,在n个城市间有m条道路连接,而且任意两个城市之间至多有一条道路直接相连.在经过一次严重的战争之后,有d条道路被破坏了.国王想要修复国家的道路系统,现在有两个重要城市A和B ...

随机推荐

  1. redis系列--你真的入门了吗?redis4.0入门~

    前言 redis作为nosql家族中非常热门的一员,也是被大型互联网公司所青睐,无论你是开发.测试或者运维,学习掌握它总会为你的职业生涯增色添彩. 当然,你或多或少已经了解redis,但是你是否了解其 ...

  2. Python学习系列:PyCharm CE 安装与测试

    开坑啦开坑啦~最近比赛要用Python了,开始强行学习. Mac下PyCharm CE 安装 先去百度PyCharm,一个很好用IDE,下载免费版的就够用啦: https://www.jetbrain ...

  3. WPF样式(Style)入门

    原文:WPF样式(Style)入门 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/qq_34802416/article/details/78231 ...

  4. Linux随笔---tar命令

    一.解压 语法:tar  [主选项+辅选项]  文件或者目录 使用该命令时,主选项是必须要有的,它告诉tar要做什么事情,辅选项是辅助使用的,可以选用. 主选项:c:create:v:verbose: ...

  5. libgdx学习记录7——Ui

    libgdx中的UI设计主要通过其对应的Style类进行实现,也可以通过skin实现.如果没有编辑好的skin文件,可以创建一个默认的skin,再添加已经设计好的style类即可,然后在需要使用的地方 ...

  6. [SHOI2015]聚变反应炉[树dp、贪心]

    题意 给定一棵 \(n\) 个点的树,每个点有一个启动能量 \(d\) 和传递能量 \(c\) ,如果一个点被启动了,就会向和他直接相连的点发送 \(c\) 的能量,初始所有节点能量为0,问最少多少能 ...

  7. effective c++ 笔记 (3-4)

    //---------------------------15/03/26---------------------------- 3:const函数的哲学思辨:就当是科普知识吧!如果成员函数是con ...

  8. 初级字典树查找在 Emoji、关键字检索上的运用 Part-2

    系列索引 Unicode 与 Emoji 字典树 TrieTree 与性能测试 生产实践 在有了 Unicode 和 Emoji 的知识准备后,本文进入编码环节. 我们知道 Emoji 是 Unico ...

  9. 腾讯/阿里/百度 BAT人才体系的职位层级、薪酬、晋升标准

    互联网圈有这么一句话:百度的技术,阿里的运营,腾讯的产品.那么代表互联网三座大山的BAT,内部人才体系有什么区别呢?今天老李就带领大家看一看~ ★ 腾讯 ★   1. 职级 腾讯职级体系分6级,最低1 ...

  10. 关于python内存地址问题

    遇到一个朋友,给我提了一个问题:python中的两个相同的值,内存地址是否一样? 当时印象里有这样一句话:Python采用基于值的内存管理模式,相同的值在内存中只有一份 于是张嘴就说是一样的 朋友说不 ...