POJ 1679 The Unique MST(判断最小生成树是否唯一)
题目链接:
http://poj.org/problem?id=1679
Description
Definition 1 (Spanning Tree): Consider a connected, undirected graph
G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'),
with the following properties:
1. V' = V.
2. T is connected and acyclic.
Definition 2 (Minimum Spanning Tree): Consider an edge-weighted,
connected, undirected graph G = (V, E). The minimum spanning tree T =
(V, E') of G is the spanning tree that has the smallest total cost. The
total cost of T means the sum of the weights on all the edges in E'.
Input
first line contains a single integer t (1 <= t <= 20), the number
of test cases. Each case represents a graph. It begins with a line
containing two integers n and m (1 <= n <= 100), the number of
nodes and edges. Each of the following m lines contains a triple (xi,
yi, wi), indicating that xi and yi are connected by an edge with weight =
wi. For any two nodes, there is at most one edge connecting them.
Output
Sample Input
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
Sample Output
3
Not Unique!
Source
/*
问题
判断最小生成树是否唯一 解题思路
利用克鲁斯卡尔算法计算出最小花费和标记每一条边,每次删除一条标记边,再进行一次克鲁斯卡尔,如果能够生成最小生
成树而且最小代价相同,说明最小生成树不唯一,否则说明最小生成树是唯一的输出最小花费。
*/
#include<cstdio>
#include<algorithm> using namespace std; struct EDGE{
int u,v,w,f;
}edge[];
int n,m;
int fa[];
int cmp(struct EDGE a,struct EDGE b){
return a.w<b.w;
}
int kruskal1();
int kruskal2();
int merge(int u,int v);
int getf(int v);
int ok(int ans); int main()
{
int T,i;
scanf("%d",&T); while(T--){
scanf("%d%d",&n,&m);
for(i=;i<m;i++){
scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
edge[i].f=;
} sort(edge,edge+m,cmp);
/*for(i=0;i<m;i++){
printf("%d %d %d %d\n",edge[i].u,edge[i].v,edge[i].w,edge[i].f);
}*/ int mina=kruskal1();
//printf("%d\n",mina); if(ok(mina))
printf("%d\n",mina);
else
printf("Not Unique!\n");
}
return ;
} int ok(int ans){
int temp,i;
for(i=;i<m;i++){
if(edge[i].f){
//printf("删去 %d 这条边\n",i);
edge[i].f=-;
temp=kruskal2();
if(temp == ans)//构成最小生成树并且最小代价相同
return ; edge[i].f=;
}
}
return ;
} int kruskal1()
{
int i;
for(i=;i<=n;i++)
fa[i]=i;
int c=,sum=; for(i=;i<m;i++){
if(merge(edge[i].u,edge[i].v)){
c++;
sum += edge[i].w;
edge[i].f=;
}
if(c == n-)
break;
}
return sum;
} int kruskal2()
{
int i;
for(i=;i<=n;i++)
fa[i]=i;
int c=,sum=; for(i=;i<m;i++){
if(edge[i].f >= && merge(edge[i].u,edge[i].v)){
//printf("使用 %d 这条边 %d %d %d\n",i,edge[i].u,edge[i].v,edge[i].w);
c++;
sum += edge[i].w;
}
if(c == n-)
break;
} if(c == n-)
return sum;
else
return -;
} int merge(int u,int v){
int t1=getf(u);
int t2=getf(v);
if(t1 != t2){
fa[t2]=t1;
return ;
}
return ;
} int getf(int v){
return fa[v] == v ? v : fa[v]=getf(fa[v]);
}
POJ 1679 The Unique MST(判断最小生成树是否唯一)的更多相关文章
- poj 1679 The Unique MST 判断最小生成树是否唯一(图论)
借用的是Kruskal的并查集,算法中的一点添加和改动. 通过判定其中有多少条可选的边,然后跟最小生成树所需边做比较,可选的边多于所选边,那么肯定方案不唯一. 如果不知道这个最小生成树的算法,还是先去 ...
- poj 1679 The Unique MST (判定最小生成树是否唯一)
题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total S ...
- POJ 1679 The Unique MST 推断最小生成树是否唯一
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 22715 Accepted: 8055 D ...
- 【POJ 1679 The Unique MST】最小生成树
无向连通图(无重边),判断最小生成树是否唯一,若唯一求边权和. 分析生成树的生成过程,只有一个圈内出现权值相同的边才会出现权值和相等但“异构”的生成树.(并不一定是最小生成树) 分析贪心策略求最小生成 ...
- POJ 1679 The Unique MST(最小生成树)
Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definit ...
- POJ 1679 The Unique MST (最小生成树)
The Unique MST 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/J Description Given a conn ...
- POJ 1679 The Unique MST 【最小生成树/次小生成树模板】
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 22668 Accepted: 8038 D ...
- (poj)1679 The Unique MST 求最小生成树是否唯一 (求次小生成树与最小生成树是否一样)
Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definit ...
- poj 1679 The Unique MST 【次小生成树】【模板】
题目:poj 1679 The Unique MST 题意:给你一颗树,让你求最小生成树和次小生成树值是否相等. 分析:这个题目关键在于求解次小生成树. 方法是,依次枚举不在最小生成树上的边,然后加入 ...
随机推荐
- iOS笔记之UIKit_UIButton
//UIButton的基本属性 _btn = [UIButton buttonWithType:UIButtonTypeCustom]; _btn.frame = CGRectMake(0, 200, ...
- Python自动化开发 - 面向对象(一)
本节内容 1.编程范式 面向过程编程 面向对象编程 2.面向对象编程介绍 类的语法 类与实例内存分配 构造方法 自定义方法 3.面向对象特性 一.编程范式 编程是程序员 用特定的语法+数据结构+算法组 ...
- PCB中实现元器件旋转一个角度放置
我们常常放置器件都是横着或者竖着的...但是有时候需要器件能旋转一个角度放更方便的话,可以这样 设置器件的属性.....
- cxGrid用法-最新
cxGrid用法-最新 在做AdoHelper实用程序的时候,我用了DevExpress的cxGrid控件.在此之前用的是dbgrid,考虑到不能把所有的数据都拉到本地,我用了动态生成的select ...
- node-webkit学习(3)Native UI API概览
node-webkit学习(3)Native UI API概览 文/玄魂 目录 node-webkit学习(3)Native UI API概览 前言 3.1 Native UI api概览 Exte ...
- bootstrap基础学习小记(三)网格简介
网格系统:网格系统的实现原理非常简单,仅仅是通过定义容器大小,平分12份(也有平分成24份或32份,但12份是最常见的),再调整内外边距,最后结合媒体查询,就制作出了强大的响应式网格系统.Bootst ...
- 【推荐】Win7任务栏增强工具 7+ Taskbar Tweaker 强大的任务栏标签管理工具
我曾经推荐过一款XP的任务栏管理工具 Taskix,这是一款在XP系统中拖动任务栏内标签的小工具. XP 32位可以下载我汉化的版本 http://www.cnblogs.com/clso/archi ...
- 1月第2周业务风控关注|“扫黄打非”部门查处互动作业、纳米盒等20多个学习类App
易盾业务风控周报每周呈报值得关注的安全技术和事件,包括但不限于内容安全.移动安全.业务安全和网络安全,帮助企业提高警惕,规避这些似小实大.影响业务健康发展的安全风险. 1.全国"扫黄打非&q ...
- MariaDB 备份与日志管理(13)
MariaDB数据库管理系统是MySQL的一个分支,主要由开源社区在维护,采用GPL授权许可MariaDB的目的是完全兼容MySQL,包括API和命令行,MySQL由于现在闭源了,而能轻松成为MySQ ...
- 组件基础(插槽slot)—Vue学习笔记
刚开始我们淡淡提过<slot></slot>现在深入了解一下. slot可以进行父组件传值到子组件. 比如:我们将hiboy通过<slot>传递到组件中. < ...