P1858 多人背包
P1858 多人背包
题目描述
求01背包前k优解的价值和
要求装满
调试日志: 初始化没有赋给 dp[0]
Solution
首先补充个知识点啊, 要求装满的背包需要初始赋 \(-inf\), 边界为 \(dp[0] = 0\)
第 \(k\) 优解的01背包
以 \(dp[j][k]\) 表示 容量为 \(j\) 的背包的第 \(k\) 优解
用到了归并排序的思想
对于第 \(i\) 个物品, 容量为 \(j\), 我们有两种选择:
- 选第 \(i\) 个物品
- 不选第 \(i\) 个物品
对于 \(1-k\) 中的每一个解做抉择, 我们可以得到 \(2k\) 种答案
由于答案分两边(选或不选)内部有序, 归并得到前 \(k\) 优即可
复杂度 \(O(nmk)\)
Code
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
#define REP(i, x, y) for(int i = (x);i <= (y);i++)
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 10019;
int K, V, num;
int w[maxn], v[maxn];
int temp[maxn];
int dp[maxn][119];
int main(){
K = RD(), V = RD(), num = RD();
REP(i, 1, num)w[i] = RD(), v[i] = RD();
REP(i, 0, V)REP(k, 1, K)dp[i][k] = -1e9;
dp[0][1] = 0;
REP(i, 1, num){
for(int j = V;j >= w[i];j--){
int p1 = 1, p2 = 1, cnt = 0;
while(cnt <= K){
if(dp[j][p1] > dp[j - w[i]][p2] + v[i])temp[++cnt] = dp[j][p1++];
else temp[++cnt] = dp[j - w[i]][p2++] + v[i];
}
REP(k, 1, K)dp[j][k] = temp[k];
}
}
int ans = 0;
REP(i, 1, K)ans += dp[V][i];
printf("%d\n", ans);
return 0;
}
P1858 多人背包的更多相关文章
- 洛谷 P1858 多人背包 解题报告
P1858 多人背包 题目描述 求01背包前k优解的价值和 输入输出格式 输入格式: 第一行三个数\(K\).\(V\).\(N\) 接下来每行两个数,表示体积和价值 输出格式: 前k优解的价值和 说 ...
- 洛谷 P1858 多人背包 DP
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 洛谷 P1858 多人背包 题目描述 求01背包前k优解的价值 ...
- [洛谷P1858] 多人背包
洛谷题目链接:多人背包 题目描述 求01背包前k优解的价值和 输入输出格式 输入格式: 第一行三个数K.V.N 接下来每行两个数,表示体积和价值 输出格式: 前k优解的价值和 输入输出样例 输入样例# ...
- 洛谷 P1858 多人背包
求01背包前k优解的价值和 输入输出格式 Input/output 输入格式:第一行三个数K.V.N(k<=50,v<=5000,n<=200)接下来每行两个数,表示体积和价值输出格 ...
- 洛谷P1858 多人背包 多人背包板子题/多人背包学习笔记
,,,本来自以为,我dp学得还挺好的 然后今天一考发现都不会啊QAQ 连最基础的知识点都不清楚啊QAQ 所以就来写个题解嘛! 先放下板子题 其实我jio得,这题只要大概了解方法就不是很难鸭,,,毕竟是 ...
- luogu P1858 多人背包
嘟嘟嘟 既然让求前\(k\)优解,那么就多加一维,\(dp[j][k]\)表示体积为\(j\)的第\(k\)优解是啥(\(i\)一维已经优化掉了). 考虑原来的转移方程:dp[j] = max(dp[ ...
- 解题:洛谷 p1858 多人背包
题面 设$dp[i][j]$表示容量为$i$时的第$j$优解,因为是优解,肯定$dp[i][j]$是随着$j$增大不断递减的,这样的话对于一个新加进来的物品,它只可能从两个容量的转移的前$k$优解中转 ...
- 背包【p1858】 多人背包(次优解 or 第k优解)
题目描述--->p1858 多人背包 分析: 很明显,这题是背包问题的一种变形. 求解 次优解or第k优解. 表示刚开始有点懵,看题解也看不太懂. 又中途去补看了一下背包九讲 然后感觉有些理解, ...
- [XJOI]noip43 T2多人背包
多人背包 DD 和好朋友们要去爬山啦!他们一共有 K 个人,每个人都会背一个包.这些包的容量是相同的,都是 V.可以装进背包里的一共有 N 种物品,每种物品都有给定的体积和价值.在 DD 看来,合理的 ...
随机推荐
- 【第三课】Centos 7.x系统安装和网络配置以及远程密钥登录
目录 一.安装CentOS 7.3 二.配置网络 1.使用dhclient命令自动获取ip地址 2.使用ip addr或ifconfig命令查看网卡信息 3.使用route命令查看路由信息 4.通过修 ...
- 深入浅出OAuth2.0授权
一.前言 说到OAuth,先来一段百度到的比较官方的解释: OAUTH协议为用户资源的授权提供了一个安全的.开放而又简易的标准.与以往的授权方式不同之处是OAUTH的授权不会使第三方触及到用户的帐号信 ...
- JNI探秘-----你不知道的FileInputStream的秘密
作者:zuoxiaolong8810(左潇龙),转载请注明出处,特别说明:本博文来自博主原博客,为保证新博客中博文的完整性,特复制到此留存,如需转载请注明新博客地址即可. 设计模式系列结束,迎来了LZ ...
- [Latex] 所有字体embedded: Type3 PDF文档处理 / True Type转换为Type 1
目录: [正文] Adobe Acrobat打印解决字体嵌入问题 [Appendix I] Type3转TRUE Type/Type 1 [Appendix II] TRUE Type转Type 1 ...
- GitLab篇之Linux下环境搭建
之前公司一直在使用微软的VSS和SVN做为源代码管理工具,考虑到VSS和SVN的局限性,个人一直建议我们应该采用Git来管理我们的源代码.Git的好处不多说相信大家也都知道的.Git不仅仅是一个源代码 ...
- Jenkins邮件通知
Jenkins邮件通知 Jenkins 配备了一个开箱工具,添加一个电子邮件通知的构建项目. 第1步 - 配置SMTP服务器. 转到 Manage Jenkins → Configure System ...
- iOS之Block总结以及内存管理
block定义 struct Block_descriptor { unsigned long int reserved; unsigned long int size; void (*copy)(v ...
- 关于使用实验室服务器的GPU以及跑上TensorFlow代码
连接服务器 Windows - XShell XFtp SSH 通过SSH来连接实验室的服务器 使用SSH连接已经不陌生了 github和OS课设都经常使用 目前使用 192.168.7.169 使用 ...
- Alpha 冲刺九
团队成员 051601135 岳冠宇 051604103 陈思孝 031602629 刘意晗 031602248 郑智文 031602234 王淇 会议照片 项目燃尽图 项目进展 完善各自部分 项目描 ...
- #Leetcode# 373. Find K Pairs with Smallest Sums
https://leetcode.com/problems/find-k-pairs-with-smallest-sums/ You are given two integer arrays nums ...