P1858 多人背包
P1858 多人背包
题目描述
求01背包前k优解的价值和
要求装满
调试日志: 初始化没有赋给 dp[0]
Solution
首先补充个知识点啊, 要求装满的背包需要初始赋 \(-inf\), 边界为 \(dp[0] = 0\)
第 \(k\) 优解的01背包
以 \(dp[j][k]\) 表示 容量为 \(j\) 的背包的第 \(k\) 优解
用到了归并排序的思想
对于第 \(i\) 个物品, 容量为 \(j\), 我们有两种选择:
- 选第 \(i\) 个物品
- 不选第 \(i\) 个物品
对于 \(1-k\) 中的每一个解做抉择, 我们可以得到 \(2k\) 种答案
由于答案分两边(选或不选)内部有序, 归并得到前 \(k\) 优即可
复杂度 \(O(nmk)\)
Code
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
#define REP(i, x, y) for(int i = (x);i <= (y);i++)
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 10019;
int K, V, num;
int w[maxn], v[maxn];
int temp[maxn];
int dp[maxn][119];
int main(){
K = RD(), V = RD(), num = RD();
REP(i, 1, num)w[i] = RD(), v[i] = RD();
REP(i, 0, V)REP(k, 1, K)dp[i][k] = -1e9;
dp[0][1] = 0;
REP(i, 1, num){
for(int j = V;j >= w[i];j--){
int p1 = 1, p2 = 1, cnt = 0;
while(cnt <= K){
if(dp[j][p1] > dp[j - w[i]][p2] + v[i])temp[++cnt] = dp[j][p1++];
else temp[++cnt] = dp[j - w[i]][p2++] + v[i];
}
REP(k, 1, K)dp[j][k] = temp[k];
}
}
int ans = 0;
REP(i, 1, K)ans += dp[V][i];
printf("%d\n", ans);
return 0;
}
P1858 多人背包的更多相关文章
- 洛谷 P1858 多人背包 解题报告
P1858 多人背包 题目描述 求01背包前k优解的价值和 输入输出格式 输入格式: 第一行三个数\(K\).\(V\).\(N\) 接下来每行两个数,表示体积和价值 输出格式: 前k优解的价值和 说 ...
- 洛谷 P1858 多人背包 DP
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 洛谷 P1858 多人背包 题目描述 求01背包前k优解的价值 ...
- [洛谷P1858] 多人背包
洛谷题目链接:多人背包 题目描述 求01背包前k优解的价值和 输入输出格式 输入格式: 第一行三个数K.V.N 接下来每行两个数,表示体积和价值 输出格式: 前k优解的价值和 输入输出样例 输入样例# ...
- 洛谷 P1858 多人背包
求01背包前k优解的价值和 输入输出格式 Input/output 输入格式:第一行三个数K.V.N(k<=50,v<=5000,n<=200)接下来每行两个数,表示体积和价值输出格 ...
- 洛谷P1858 多人背包 多人背包板子题/多人背包学习笔记
,,,本来自以为,我dp学得还挺好的 然后今天一考发现都不会啊QAQ 连最基础的知识点都不清楚啊QAQ 所以就来写个题解嘛! 先放下板子题 其实我jio得,这题只要大概了解方法就不是很难鸭,,,毕竟是 ...
- luogu P1858 多人背包
嘟嘟嘟 既然让求前\(k\)优解,那么就多加一维,\(dp[j][k]\)表示体积为\(j\)的第\(k\)优解是啥(\(i\)一维已经优化掉了). 考虑原来的转移方程:dp[j] = max(dp[ ...
- 解题:洛谷 p1858 多人背包
题面 设$dp[i][j]$表示容量为$i$时的第$j$优解,因为是优解,肯定$dp[i][j]$是随着$j$增大不断递减的,这样的话对于一个新加进来的物品,它只可能从两个容量的转移的前$k$优解中转 ...
- 背包【p1858】 多人背包(次优解 or 第k优解)
题目描述--->p1858 多人背包 分析: 很明显,这题是背包问题的一种变形. 求解 次优解or第k优解. 表示刚开始有点懵,看题解也看不太懂. 又中途去补看了一下背包九讲 然后感觉有些理解, ...
- [XJOI]noip43 T2多人背包
多人背包 DD 和好朋友们要去爬山啦!他们一共有 K 个人,每个人都会背一个包.这些包的容量是相同的,都是 V.可以装进背包里的一共有 N 种物品,每种物品都有给定的体积和价值.在 DD 看来,合理的 ...
随机推荐
- 洛咕 P4491 [HAOI2018]染色
显然颜色数量不会超过\(lim=\min(m,n/S)\) 考虑容斥,计算恰好出现了\(S\)次的颜色有至少\(i\)种的方案数\(f[i]\),钦定\(i\)种颜色正好放\(S\)种 有\(m\)种 ...
- libgdx学习记录16——资源加载器AssetManager
AssetManager用于对游戏中的资源进行加载.当游戏中资源(图片.背景音乐等)较大时,加载时会需要较长时间,可能会阻塞渲染线程,使用AssetManager可以解决此类问题. 主要优点: 1. ...
- pycharm如何在虚拟环境中引入别人的项目
如果你想引入别人的项目,但是呢引入的项目可能与自己原先装的模块的版本产生冲突,而且如果引入一个项目就在本地进行运行使用,每个项目用的依赖包都不大相同,就会导致解释器安装包过多,就会导致加载过慢,甚至会 ...
- (3)学习笔记 ) ASP.NET CORE微服务 Micro-Service ---- Consul服务治理
Consul是注册中心,服务提供者.服务提供者.服务消费者等都要注册到Consul中,这样就可以实现服务提供者.服务消费者的隔离. 除了Consul之外,还有Eureka.Zookeeper等类似软件 ...
- Asp.Net_Mvc3.5语法_<%%>的用法
一. <%%>这种格式实际上就是和asp的用法一样的,只是asp中里面是vbscript或 者javascript代码,而在asp.net中用的是.net平台下支持的语言.特别 注意:服务 ...
- Json和Map互转,四个包(org.json/net.sf.json/com.google.gson/com.alibaba.fastjson)
目前使用的(org.json/net.sf.json/com.google.gson/com.alibaba.fastjson)这四种json-map互转,其他的以后在补充.............. ...
- Appium自动化部署及连接Appium服务
Appium自动化部署: 1)安装appium桌面程序安装:超链接 2)安装客户端 pip install appium-python-client 3)安装服务器 安装 Nodejs 4)连接app ...
- [T-ARA][결혼 하지마][不要结婚]
歌词来源:http://music.163.com/#/song?id=27808773 作曲 : 二段横踢 [作曲 : 二段横踢] 作词 : 二段横踢 [作词 : 二段横踢] Hey anybody ...
- linux 操作 mysql 指定端口登录 以及启动 停止
linux 操作 mysql 指定端口登录 mysql -uroot -p -h10.154.0.43 -P3341 1.查看mysql版本方法一:status;方法二:select version( ...
- 作业 20181204-4 互评Final版本
此作业要求参见:[https://edu.cnblogs.com/campus/nenu/2018fall/homework/2478] 组名:可以低头,但没必要 组长:付佳 组员:张俊余 李文涛 孙 ...