Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are currently a single string with length M (1 ≤ M ≤ 2,000) characters drawn from an alphabet of N (1 ≤ N ≤ 26) different symbols (namely, the lower-case roman alphabet).

Cows, being the mischievous creatures they are, sometimes try to spoof the system by walking backwards. While a cow whose ID is "abcba" would read the same no matter which direction the she walks, a cow with the ID "abcb" can potentially register as two different IDs ("abcb" and "bcba").

FJ would like to change the cows's ID tags so they read the same no matter which direction the cow walks by. For example, "abcb" can be changed by adding "a" at the end to form "abcba" so that the ID is palindromic (reads the same forwards and backwards). Some other ways to change the ID to be palindromic are include adding the three letters "bcb" to the begining to yield the ID "bcbabcb" or removing the letter "a" to yield the ID "bcb". One can add or remove characters at any location in the string yielding a string longer or shorter than the original string.

Unfortunately as the ID tags are electronic, each character insertion or deletion has a cost (0 ≤ cost ≤ 10,000) which varies depending on exactly which character value to be added or deleted. Given the content of a cow's ID tag and the cost of inserting or deleting each of the alphabet's characters, find the minimum cost to change the ID tag so it satisfies FJ's requirements. An empty ID tag is considered to satisfy the requirements of reading the same forward and backward. Only letters with associated costs can be added to a string.

Input

Line 1: Two space-separated integers: N and M 
Line 2: This line contains exactly M characters which constitute the initial ID string 
Lines 3.. N+2: Each line contains three space-separated entities: a character of the input alphabet and two integers which are respectively the cost of adding and deleting that character.

Output

Line 1: A single line with a single integer that is the minimum cost to change the given name tag.

Sample Input

3 4
abcb
a 1000 1100
b 350 700
c 200 800

Sample Output

900

dp[i][j]表示区间[i,j],变成回文字符串的最小代价
递推式思路:
  区间[i][j]可以由[i+1][j]或者[i][j-1] 并且加上对于字符i或者j的操作最小代价(删除,添加的最小值)
  为什么是删除添加的最小值呢?是因为,对于[i+1][j]表示的是这个区间为回文字符串的操作代价,有加上了个i字符,为了新的区间继续为回文字符串,所以需要再在末尾加上一个i,或者删除在首部加上的i
  因为从i+1推断出i所以要采用自底向上
#include<iostream>
#include<algorithm>
#include<string>
using namespace std;
int dp[][];
int op[];
int main(){
int n,m;
cin>>n>>m;
string s;
cin>>s;
for(int i=;i<n;i++){
char c;
int a,b;
cin>>c>>a>>b;
op[c-'a']=min(a,b);
}
for(int i=m-;i>=;i--){
for(int j=i+;j<m;j++){
dp[i][j]=min(dp[i+][j]+op[s[i]-'a'],dp[i][j-]+op[s[j]-'a']);
if(s[i]==s[j])
dp[i][j]=min(dp[i][j],dp[i+][j-]);
}
}
cout<<dp[][m-]<<endl;
return ;
}

---恢复内容结束---

POJ3280--Cheapest Palindrome(动态规划)的更多相关文章

  1. POJ3280 Cheapest Palindrome 【DP】

    Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6013   Accepted: 29 ...

  2. poj3280 Cheapest Palindrome(回文串区间dp)

    https://vjudge.net/problem/POJ-3280 猛刷简单dp第一天第三题. 这个据说是[求字符串通过增减操作变成回文串的最小改动次数]的变体. 首先增减操作的实质是一样的,所以 ...

  3. POJ3280 - Cheapest Palindrome(区间DP)

    题目大意 给定一个字符串,要求你通过插入和删除操作把它变为回文串,对于每个字符的插入和删除都有一个花费,问你把字符串变为回文串最少需要多少花费 题解 看懂题立马YY了个方程,敲完就交了,然后就A了,爽 ...

  4. poj3280 Cheapest Palindrome

    思路: 区间dp.添加和删除本质相同. 实现: #include <iostream> #include <cstdio> using namespace std; int n ...

  5. POJ3280 Cheapest Palindrome (区间DP)

    dp[i][j]表示将字符串子区间[i,j]转化为回文字符串的最小成本. 1 #include<cstdio> 2 #include<algorithm> 3 #include ...

  6. [poj3280]Cheapest Palindrome_区间dp

    Cheapest Palindrome poj-3280 题目大意:给出一个字符串,以及每种字符的加入代价和删除代价,求将这个字符串通过删减元素变成回文字符串的最小代价. 注释:每种字符都是小写英文字 ...

  7. Cheapest Palindrome(区间DP)

    个人心得:动态规划真的是够烦人的,这题好不容易写出了转移方程,结果超时,然后看题解,为什么这些题目都是这样一步一步的 递推,在我看来就是懵逼的状态,还有那个背包也是,硬是从最大的V一直到0,而这个就是 ...

  8. 【POJ - 3280】Cheapest Palindrome(区间dp)

    Cheapest Palindrome 直接翻译了 Descriptions 给定一个字符串S,字符串S的长度为M(M≤2000),字符串S所含有的字符的种类的数量为N(N≤26),然后给定这N种字符 ...

  9. POJ 题目3280 Cheapest Palindrome(区间DP)

    Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7148   Accepted: 34 ...

  10. 【POJ】3280 Cheapest Palindrome(区间dp)

    Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10943   Accepted: 5 ...

随机推荐

  1. laravel中不使用 remember_token时退出报错,如何解决?

    Route::get('auth/logout','Auth\AuthController@getLogout'); 这是laravel自带的退出功能只需要写这一条路由就行了,但是很可能爆出以下错误: ...

  2. 4C - 七夕节

    七夕节那天,月老来到数字王国,他在城门上贴了一张告示,并且和数字王国的人们说:"你们想知道你们的另一半是谁吗?那就按照告示上的方法去找吧!" 人们纷纷来到告示前,都想知道谁才是自己 ...

  3. 前端面试问题html汇总

    1.对WEB标准以及W3C的理解与认识 结构层 html :表示层  css:行为层:js; 标签闭合.标签小写.不乱嵌套.提高搜索机器人搜索机率.使用外链css和js脚本.结构行为表现的分离.文件下 ...

  4. JVM 运行时数据区 (三)

    JVM运行时数据区 运行时数据区由 程序计数器.java虚拟机栈.本地方法栈.堆.方法区 组成: 1.程序计数器 每一个Java线程都有一个程序计数器,用于保存程序执行到当前方法的哪一个指令,它是线程 ...

  5. 定时任务起的java进程没有释放导致oracle的问题not availavle & out of memory

    最近发现一个问题,我们设置了一个定时任务,用于每天的对账,每天的对账都是启动一个java程序(jar包),时间久了,出现下面的问题: 有很多CardPaymentBatch.jar进程驻留在系统当中, ...

  6. Luogu 4556 雨天的尾巴 - 启发式合并线段树

    Solution 用$col$记录 数量最多的种类, $sum$记录 种类$col$ 的数量. 然后问题就是树上链修改, 求 每个节点 数量最多的种类. 用树上差分 + 线段树合并更新即可. Code ...

  7. 深入研究 UCenter API For .NET

    康盛旗下产品的搭建 来自http://www.dozer.cc/2011/02/ucenter-api-in-depth-4th/ 1.UCenter 这个当然是最基本的东西,安装起来也很简单,官方就 ...

  8. UI设计教程分享:让你彻底读懂字体

    一份普普通通.规规矩矩的设计 一份让人印象深刻.新颖有趣的设计 差在哪?其实就差在三个字上! “优秀的设计不是每一个细节都有亮点,而是弱化其他元素,让某一个亮点最大化.” 今天“骉叔的设计心得”就来总 ...

  9. Spring IOC(一)体系结构

    Spring IOC(一)体系结构 Spring 系列目录(https://www.cnblogs.com/binarylei/p/10198698.html) BeanFactory 是Spring ...

  10. 微信小程序获取当前位置

    详细参数说明请看小程序api文档:https://developers.weixin.qq.com/miniprogram/dev/api/wx.openLocation.html wx.getLoc ...