题目链接

\(Description\)

求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示)。

\(Solution\)

对每位分别DP。注意考虑前导0: 在最后统计时,把0的答案减掉对应位的即可,在第\(i\)位的前导0会产生额外的\(10^{i-1}\)个答案。

#include <cstdio>
#include <cstring>
#include <algorithm> int Ans[10],A[10],f[10][10],pw[10];
bool vis[10][10]; int DFS(int pos,int cnt,bool lim,int K)
{
if(!pos) return cnt;
if(!lim && vis[pos][cnt]) return f[pos][cnt];
int up=lim?A[pos]:9, res=0;
for(int i=0; i<=up; ++i)
res+=DFS(pos-1,cnt+(i==K),i==up&&lim,K);
if(!lim) vis[pos][cnt]=1,f[pos][cnt]=res;
return res;
} int main()
{
pw[0]=1;
for(int i=1; i<=8; ++i) pw[i]=pw[i-1]*10;
int l,r;
while(scanf("%d%d",&l,&r),l&&r)
{
if(l>r) std::swap(l,r);
for(A[0]=0; r; r/=10) A[++A[0]]=r%10;
for(int i=0; i<=9; ++i)//每个数答案都是不同的。。别忘清空。
memset(vis,0,sizeof vis), Ans[i]=DFS(A[0],0,1,i);
int bit=A[0]; for(A[0]=0,--l; l; l/=10) A[++A[0]]=l%10;
for(int i=0; i<=9; ++i)
memset(vis,0,sizeof vis), Ans[i]-=DFS(A[0],0,1,i);
while(bit!=A[0]) Ans[0]-=pw[--bit];
for(int i=0; i<9; ++i) printf("%d ",Ans[i]);
printf("%d\n",Ans[9]);
}
return 0;
}

数字计数:

//824kb	52ms
//被longlong坑。。
#include <cstdio>
#include <cstring>
#include <algorithm>
typedef long long LL; LL Ans[13],A[13],f[13][13],pw[13];
bool vis[13][13]; LL DFS(int pos,LL cnt,bool lim,int K)
{
if(!pos) return cnt;
if(!lim && vis[pos][cnt]) return f[pos][cnt];
int up=lim?A[pos]:9; LL res=0;
for(int i=0; i<=up; ++i)
res+=DFS(pos-1,cnt+(i==K),i==up&&lim,K);
if(!lim) vis[pos][cnt]=1,f[pos][cnt]=res;
return res;
} int main()
{
pw[0]=1;
for(int i=1; i<=12; ++i) pw[i]=pw[i-1]*10ll;
LL l,r;
scanf("%lld%lld",&l,&r);
if(l>r) std::swap(l,r);
for(A[0]=0; r; r/=10) A[++A[0]]=r%10;
for(int i=0; i<=9; ++i)//每个数答案都是不同的。。别忘清空。
memset(vis,0,sizeof vis), Ans[i]=DFS(A[0],0,1,i);
int bit=A[0]; for(A[0]=0,--l; l; l/=10) A[++A[0]]=l%10;
for(int i=0; i<=9; ++i)
memset(vis,0,sizeof vis), Ans[i]-=DFS(A[0],0,1,i);
while(bit!=A[0]) Ans[0]-=pw[--bit];
for(int i=0; i<9; ++i) printf("%lld ",Ans[i]);
printf("%lld",Ans[9]); return 0;
}

UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)的更多相关文章

  1. [ZJOI2010]数字计数 数位DP

    最近在写DP,今天把最近写的都放上来好了,,, 题意:给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 首先询问的是一个区间,显然是要分别求出1 ~ r ,1 ...

  2. [luogu2602 ZJOI2010] 数字计数 (数位dp)

    传送门 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. Output ...

  3. Luogu P2602 [ZJOI2010]数字计数 数位DP

    很久以前就...但是一直咕咕咕 思路:数位$DP$ 提交:1次 题解:见代码 #include<cstdio> #include<iostream> #include<c ...

  4. 洛谷P2602 [ZJOI2010]数字计数(数位dp)

    数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...

  5. UVA 1640 The Counting Problem UVA1640 求[a,b]或者[b,a]区间内0~9在里面各个数的数位上出现的总次数。

    /** 题目:UVA 1640 The Counting Problem UVA1640 链接:https://vjudge.net/problem/UVA-1640 题意:求[a,b]或者[b,a] ...

  6. UVA 1640 The Counting Problem

    https://vjudge.net/problem/UVA-1640 题意:统计区间[l,r]中0——9的出现次数 数位DP 注意删除前导0 #include<cmath> #inclu ...

  7. 1833: [ZJOI2010]count 数字计数——数位dp

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1833 省选之前来切一道裸的数位dp.. 题意 统计[a,b]中0~9每个数字出现的次数(不算 ...

  8. bzoj1833: [ZJOI2010]count 数字计数 数位dp

    bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...

  9. [bzoj1833][ZJOI2010]count 数字计数——数位dp

    题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...

随机推荐

  1. Oracle之xml的增删改查操作

    工作之余,总结一下xml操作的一些方法和心得! tip: xmltype函数是将clob字段转成xmltype类型的函数,若字段本身为xmltype类型则不需要引用xmltype()函数 同名标签用数 ...

  2. Signal ()函数详细介绍

    1. 功能 设置某一信号的对应动作 2. 声明 #include <signal.h> typedef void (*sighandler_t)(int); sighandler_t si ...

  3. element-ui合并行:span-method

    objectSpanMethod({ row, column, rowIndex, columnIndex }) { if (columnIndex === 0) { if (rowIndex % 2 ...

  4. 设计模式之Mixin模式

    介绍 mixin模式就是一些提供能够被一个或者一组子类简单继承功能的类,意在重用其功能.在面向对象的语言中,我们会通过接口继承的方式来实现功能的复用.但是在javascript中,我们没办法通过接口继 ...

  5. ifconfig不显示网卡eth0

    参考资料:http://blog.itpub.net/25851087/viewspace-1700568/ 在/etc/sysconfig/network-script/ifcfg-eth0网卡配置 ...

  6. 各种卷积类型Convolution

    从最开始的卷积层,发展至今,卷积已不再是当初的卷积,而是一个研究方向.在反卷积这篇博客中,介绍了一些常见的卷积的关系,本篇博客就是要梳理这些有趣的卷积结构. 阅读本篇博客之前,建议将这篇博客结合在一起 ...

  7. HTTP Methods

    简介 HTTP 定义了一组请求方法,以表明要对给定资源执行的操作.指示针对给定资源要执行的期望动作, 虽然他们也可以是名词,但这些请求方法有时被称为HTTP动词.每一个请求方法都实现了不同的语义,但一 ...

  8. struts与ognl结合【重要】

    -----------------------------ognl表达式------------------------ OGNL:对象视图导航语言.  ${user.addr.name} 这种写法就 ...

  9. BurpSuite中的安全测试插件推荐

    Burp Suite 是用于攻击web 应用程序的集成平台.它包含了许多工具,并为这些工具设计了许多接口,以促进加快攻击应用程序的过程.所有的工具都共享一个能处理并显示HTTP 消息,持久性,认证,代 ...

  10. 006使用Grafana展示时间序列数据

    简介 Grafana是一个独立运行的系统,内置了Web服务器.它可以基于仪表盘的方式来展示.分析时间序列数据. Grafana支持多种数据源,例如:Graphite.OpenTSDB.InfluxDB ...