题目描述

输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数

条件:

1.P,Q是正整数

2.要求P,Q以x0为最大公约数,以y0为最小公倍数.

试求:满足条件的所有可能的两个正整数的个数.

输入输出格式

输入格式:

二个正整数x0,y0

输出格式:

一个数,表示求出满足条件的P,Q的个数

输入输出样例

输入样例#1:

3 60
输出样例#1:

4

说明

P,Q有4种

3 60 15 12 12 15 60 3

分析:暴力可以过,但是也可以用数学方法,利用唯一分解定律,最大公约数的次数都是取min,最小公倍数的次数都是取max,如果次数不同,证明这一位的贡献值是2,两个数一个取max,一个取min,就好了,如果次数相等,就没有贡献。在处理前先判断一下最大公约数能不能整除最小公倍数.

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath> using namespace std; int x,y,cnt; int qpow(int a,int b)
{
int ans = ;
while (b)
{
if (b & )
ans *= a;
a *= a;
b >>= ;
}
return ans;
} int main()
{
scanf("%d%d",&x,&y);
if (y % x != )
printf("0\n");
else
{
int k = y / x;
for (int i = ; i <= k; i++)
{
if (k % i == )
{
while (k % i == )
k /= i;
cnt++;
}
}
printf("%d\n",qpow(,cnt));
} return ;
}

洛谷P1029 最大公约数和最小公倍数问题的更多相关文章

  1. [洛谷P1029]最大公约数与最小公倍数问题 题解(辗转相除法求GCD)

    [洛谷P1029]最大公约数与最小公倍数问题 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P, ...

  2. 洛谷——P1029 最大公约数和最小公倍数问题

    P1029 最大公约数和最小公倍数问题 题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1 ...

  3. 洛谷P1029 最大公约数和最小公倍数问题 [2017年6月计划 数论02]

    P1029 最大公约数和最小公倍数问题 题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1 ...

  4. 洛谷P1029 最大公约数和最小公倍数问题 题解

    题目链接:https://www.luogu.com.cn/problem/P1029 题目描述 输入 \(2\) 个正整数 \(x_0,y_0(2 \le x_0 \lt 100000,2 \le ...

  5. 洛谷 P1029 最大公约数和最小公倍数问题 Label:Water&&非学习区警告

    题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为 ...

  6. 洛谷P1029 最大公约数和最小公倍数问题 (简单数学题)

    一直懒的写博客,直到感觉不写不总结没有半点进步,最后快乐(逼着)自己来记录蒟蒻被学弟学妹打压这一年吧... 题目描述 输入22个正整数x_0,y_0(2 \le x_0<100000,2 \le ...

  7. 洛谷 P1029 最大公约数和最小公倍数问题

    有两种做法 一种是gcd与lcm相乘后就是两个数的乘积,枚举第一个数,算出第二数,看最大公约数是不是题目给的. 第二种就lcm/gcd的答案为两个互质的数相乘.然后就枚举有多少组互质的数相乘等于lcm ...

  8. 洛谷P1029 最小公约数和最大公倍数问题【数论】

    题目:https://www.luogu.org/problemnew/show/P1029 题意: 给定两个数$x$和$y$,问能找到多少对数$P$$Q$,使得他们的最小公约数是$x$最大公倍数是$ ...

  9. 【数论】P1029 最大公约数和最小公倍数问题

    题目链接 P1029 最大公约数和最小公倍数问题 思路 如果有两个数a和b,他们的gcd(a,b)和lcm(a,b)的乘积就等于ab. 也就是: ab=gcd(a,b)*lcm(a,b) 那么,接下来 ...

随机推荐

  1. 树形dp入门两题

    题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明 ...

  2. 网络流dinic模板,邻接矩阵+链式前向星

    //这个是邻接矩阵的#include<iostream> #include<queue> #include<string.h> #include<stdio. ...

  3. 【python 3.6】python读取json数据存入MySQL(一)

    整体思路: 1,读取json文件 2,将数据格式化为dict,取出key,创建数据库表头 3,取出dict的value,组装成sql语句,循环执行 4,执行SQL语句 #python 3.6 # -* ...

  4. JAVA学习笔记--接口

    一.抽象类和抽象方法 在谈论接口之前,我们先了解一下抽象类和抽象方法.我们知道,在继承结构中,越往下继承,类会变得越来越明确和具体,而往上回溯,越往上,类会变得越抽象和通用.我们有时候可能会需要这样一 ...

  5. python2和python3同时存在如何安装和使用pip

    linux下 如果没有pip则需要安装pip python2安装pip sudo apt install python-pip1如果是python3,则如下: sudo apt install pyt ...

  6. IT工具使用

    linux 其他知识目录 常用快捷键总结 博客view  code 删除,先删除,再清除格式

  7. 带你玩转JavaScript中的隐式强制类型转换

    正题开始前我想先抛出一个问题,==和===有什么区别?可能一般人会想,不就是后者除了比较值相等之外还会比较类型是否相等嘛,有什么好问的,谁不知道?!但是这样说还不够准确,两者的真正区别其实是==在比较 ...

  8. 软件定义网络(SDN)研究进展

    写在前面 这是我入门SDN以来的第一篇论文,它是一篇中文综述,看起来相对容易.也让我对SDN有了进一步的认识.下面是我的一些心得. 全文框架 SDN 将数据平面与控制平面解耦合,简化了网络管理. SD ...

  9. DB2 日志

    跟Oracle类似DB2也分为两个模式,日志循环vs归档日志,也就是非归档和归档模式,下面对这两种模式做简单的介绍. 日志循环 日志循环是默认方式,也就是非归档模式,这种模式只支持backup off ...

  10. zabbix简介

    (一)监控系统 初探 前言: 对于监控系统而言,首先必须搞清楚需要监控什么? (1)硬件设备和软件设备:服务器,路由器,交换机,I/O存储系统,操作系统,网络,各种应用程序 (2)各种指标:数据库宕机 ...