参考文献

1 The net jointly defines a function and its gradient by composition and auto-differentiation.

2 The net is a set of layers connected in a computation graph – a directed acyclic graph (DAG) to be exact.保证前向后向通路,从硬盘加载数据到返回loss,进而进行分类等任务。

3 The net is defined as a set of layers and their connections in a plaintext modeling language.网是层的集合加上连接。

例子:A simple logistic regression classifier is defined by

 name: "LogReg"
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
data_param {
source: "input_leveldb"
batch_size:
}
}
layer {
name: "ip"
type: "InnerProduct"
bottom: "data"
top: "ip"
inner_product_param {
num_output:
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip"
bottom: "label"
top: "loss"
}

caffe学习4——net的更多相关文章

  1. Caffe学习笔记2--Ubuntu 14.04 64bit 安装Caffe(GPU版本)

    0.检查配置 1. VMWare上运行的Ubuntu,并不能支持真实的GPU(除了特定版本的VMWare和特定的GPU,要求条件严格,所以我在VMWare上搭建好了Caffe环境后,又重新在Windo ...

  2. Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  3. Caffe学习系列(23):如何将别人训练好的model用到自己的数据上

    caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...

  4. Caffe学习系列(22):caffe图形化操作工具digits运行实例

    上接:Caffe学习系列(21):caffe图形化操作工具digits的安装与运行 经过前面的操作,我们就把数据准备好了. 一.训练一个model 右击右边Models模块的” Images" ...

  5. Caffe学习系列(21):caffe图形化操作工具digits的安装与运行

    经过前面一系列的学习,我们基本上学会了如何在linux下运行caffe程序,也学会了如何用python接口进行数据及参数的可视化. 如果还没有学会的,请自行细细阅读: caffe学习系列:http:/ ...

  6. Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  7. 转 Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  8. 转 Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  9. Caffe学习系列——工具篇:神经网络模型结构可视化

    Caffe学习系列——工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py ...

  10. Caffe 学习系列

    学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一 ...

随机推荐

  1. C++ 单词接龙

    问题描述: 拉姆刚刚开始学习英文字母,对单词排序很感兴趣,他能够迅速确定是否可以将这些单词排列在一个列表中,使得该列表中任何单词的首字母与前一个单词的尾字母相同,力能编写一个计算机程序帮助拉姆进行判断 ...

  2. Nginx解决post请求405问题

    和工商银行的一个合作项目,对方客户端需要请求我们的一个静态页面,但是客户端发送过来的请求方法用的post,日志显示405错误(请求方法错误),正常一个静态页面直接用get请求就可以了,工行那边说写死了 ...

  3. ImportError: No module named argparse

    如果有root权限,可以运行: easy_install argparse 如果没有root权限,As a simple solution copy argparse.py from https:// ...

  4. mybatis缓存有关的设置和属性

    知识点:mybatis缓存相关的设置和属性 重点:每次执行增删改操作后,一二级缓存被清空,是因为标签设置默认属性为 flushCache="true" (1) <!-- 全局 ...

  5. LeetCode——3Sum

    1. Question Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? ...

  6. 【ROI Pooling】ROI Pooling层详解(转)

    原文链接:https://blog.deepsense.ai/region-of-interest-pooling-explained/ 目标检测typical architecture 通常可以分为 ...

  7. codeforces 578c - weekness and poorness - 三分

    2017-08-27 17:24:07 writer:pprp 题意简述: • Codeforces 578C Weakness and poorness• 给定一个序列A• 一个区间的poornes ...

  8. POJ 1985 Cow Marathon(树的直径模板)

    http://poj.org/problem?id=1985 题意:给出树,求最远距离. 题意: 树的直径. 树的直径是指树的最长简单路. 求法: 两遍BFS :先任选一个起点BFS找到最长路的终点, ...

  9. PHP实体层基础类

    PHP实体层基础类 class BaseModel { private $tableName; private $fields=array(); function __construct() { $t ...

  10. Python操作Memcached使用Python-memcached模块

    安装Python的memcached驱动模块 pip install python-memcached 简单的操作示例: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 #!/ ...