数学中的Sin和Cos是什么意思?

作者:admin 分类:生活随笔 发表于 2012年03月21日 16:48

问:数学中的Sin和Cos是什么意思?

答:sin, cos, tan 都是三角函数,分别叫做“正弦”、“余弦”、“正切”。

在初中阶段,这三个三角函数是这样解释的:

在一个直角三角形中,设∠C=90°,∠A, B, C 所对的边分别记作 a,b,c,那么对于锐角∠A,它的对边 a 和斜边 c 的比值 a/c 叫做∠A的正弦,记作 sinA;它的邻直角边 b 和斜边 c 的比值 b/c 叫做∠A的余弦,记作 cosA;它的对边 a 和邻直角边 b 的比值 a/b 叫做∠A的正切,记作 tanA。

在高中阶段,这三个三角函数是这样解释的:

在一个平面直角坐标系中,以原点为圆心,1 为半径画一个圆,这个圆交 x 轴于 A 点。以 O 为旋转中心,将 A 点逆时针旋转一定的角度α至 B 点,设此时 B 点的坐标是(x,y),那么此时 y 的值就叫做α的正弦,记作 sinα;此时 x 的值就叫做α的余弦,记作 cosα;y 与 x 的比值 y/x 就叫做α的正切,记作 tanα。

引:诱导公式

常用的诱导公式有以下几组:

1.sinα^2 +cosα^2=1

2.sinα/cosα=tanα

3.tanα=1/cotα

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

一般的最常用公式:

口诀:奇变偶不变,符号看象限

Sin(A+B)=SinA*CosB+SinB*CosA

Sin(A-B)=SinA*CosB-SinB*CosA

Cos(A+B)=CosA*CosB-SinA*SinB

Cos(A-B)=CosA*CosB+SinA*SinB

Tan(A+B)=(TanA+TanB)/(1-TanA*TanB)

Tan(A-B)=(TanA-TanB)/(1+TanA*TanB)

同角三角函数的关系(即同角八式)

平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

积的关系:

sinα=tanα*cosα

cosα=cotα*sinα

tanα=sinα*secα

cotα=cosα*cscα

secα=tanα*cscα

cscα=secα*cotα

倒数关系:

tanα*cotα=1

sinα*cscα=1

cosα*secα=1

商数关系:

sina/cosa=tana

cosa/sina=cota

直角三角形ABC中,角A的

正弦值就等于角A的对边比斜边: sina=y/r

余弦值等于角A的邻边比斜边: cosa=x/r

正切值等于对边比邻边: tana=y/x

三角函数恒等变形公式

两角和与差的三角函数

cos(α+β)=cosα*cosβ-sinα*sinβ

cos(α-β)=cosα*cosβ+sinα*sinβ

sin(α±β)=sinα*cosβ±cosα*sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα*tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα*tanβ)

辅助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

倍角公式

sin(2α)=2sinα*cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

三倍角公式

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

半角公式

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=vercos(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

万能公式

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

积化和差公式

sinα*cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα*sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα*cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα*sinβ=-(1/2)[cos(α+β)-cos(α-β)]

和差化积公式

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

其他

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

-----------------------原文链接  http://www.ruyhouse.com/Article/42

数学中的Sin和Cos是什么意思?(转)的更多相关文章

  1. Python中的sin和cos函数

        1 第一次使用math.sin()和math.cos(),可是发现结果不对,比如Math.sin(90)=0.893996663600,奇怪? 2 3 一查,原来sin(x) \n\n Ret ...

  2. [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)

    (2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...

  3. [再寄小读者之数学篇](2014-11-19 $\sin(x+y)=\sin x\cos y+\cos x\sin y$)

    $$\bex \sin(x+y)=\sin x\cos y+\cos x\sin y. \eex$$ Ref. [Proof Without Words: Sine Sum Identity, The ...

  4. 单变量微积分笔记20——三角替换1(sin和cos)

    sin和cos的常用公式 基本公式: 半角公式: 微分公式: 积分公式: 三角替换 示例1 根据微分公式,cosxdx = dsinx 示例2 示例3 半角公式 示例1 示例2 解法1: 解法2: 综 ...

  5. DX12龙书 01 - 向量在几何学和数学中的表示以及运算定义

    0x00 向量 向量 ( vector ) 是一种兼具大小 ( magnitude ) 和方向的量. 0x01 几何表示 几何方法中用一条有向线段来表示一个向量,其中,线段长度代表向量的模,箭头的指向 ...

  6. JS规则 我与你同在(逻辑与操作符)数学中的“b大于a,b小于c”是“a<b<c”,那么在JavaScript中可以用&&表示

    我与你同在(逻辑与操作符) 数学里面的"a>b",在JavaScript中还表示为a>b:数学中的"b大于a,b小于c"是"a<b& ...

  7. 带 sin, cos 的线段树 - 牛客

    链接:https://www.nowcoder.com/acm/contest/160/D来源:牛客网 题目描述给出一个长度为n的整数序列a1,a2,...,an,进行m次操作,操作分为两类.操作1: ...

  8. 幂等性是数学中的一个概念,表达的是N次变换与1次变换的结果相同

    幂等性是数学中的一个概念,表达的是N次变换与1次变换的结果相同

  9. 利用Xilinx中的ROM构造查找表来计算sin和cos的方法探讨

    1.使用matlab制作.coe文件 查找表的构造 构造256点的正余弦表 exp(-j*2*pi*(0:255)/256),分别得到 cos和sin的查找表 matlab代码: 求sin fid = ...

随机推荐

  1. 【BZOJ4754】独特的树叶(哈希)

    [BZOJ4754]独特的树叶(哈希) 题面 BZOJ 给定一个\(n\)个节点的树A和一个\(n+1\)个节点的树\(B\) 求\(B\)的一个编号最小的节点,使得删去这个节点后\(A,B\)同构 ...

  2. 【BZOJ1491】【NOI2007】社交网络(最短路,动态规划)

    [BZOJ1491][NOI2007]社交网络(最短路,动态规划) 题面 BZOJ 洛谷 图片是假的,只能到OJ上看 Description 在社交网络(socialnetwork)的研究中,我们常常 ...

  3. MySQL 5.5 主从复制

    MySQL 5.5 主从复制的原理.过程   分为同步复制和异步复制,实际复制架构中大部分为异步复制.复制的基本过程如下:  1).Slave上面的IO进程连接上Master,并请求从指定日志文件的指 ...

  4. [HEOI2015]公约数数列

    不错的分块题 gcd和xor其实并没有联系 这里,xor的按位性质没有半点卵用 gcd的性质却很关键: 一个数组,前缀gcd最多logn个不同的 gcd不太多,(暴力的基础) 所有考虑分块. 分块,每 ...

  5. python基础----函数的定义和调用、return语句、变量作用域、传参、函数嵌套、函数对象、闭包、递归函数

    1.函数的定义: 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率.你已经知道Python提供了许多内建函数,比如print().但你也可 ...

  6. 复习JavaScript随手记

    数据类型 基本类型 string number boolean undefined number类型,包含整数浮点数 NaN和自己都不相等,涉及NaN的计算结果都是NaN isNaN()函数用于判断一 ...

  7. 线性判别分析(Linear Discriminant Analysis)

    1. 问题 之前我们讨论的PCA.ICA也好,对样本数据来言,可以是没有类别标签y的.回想我们做回归时,如果特征太多,那么会产生不相关特征引入.过度拟合等问题.我们可以使用PCA来降维,但PCA没有将 ...

  8. python的复制,深拷贝和浅拷贝的区别(转)

    在python中,对象赋值实际上是对象的引用.当创建一个对象,然后把它赋给另一个变量的时候,python并没有拷贝这个对象,而只是拷贝了这个对象的引用 一般有三种方法, alist=[1,2,3,[& ...

  9. 2016-2017 ACM-ICPC East Central North America Regional Contest (ECNA 2016) F 区间dp

    Problem F Removal GameBobby Roberts is totally bored in his algorithms class, so he’s developed a li ...

  10. POJ--2752

    原题链接:http://poj.org/problem?id=2752 分析:no! #include<cstdio> #include<cstring> #include&l ...