BZOJ2005 NOI2010 能量采集


Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】
5 4
【样例输入2】
3 4

Sample Output

【样例输出1】
36
【样例输出2】
20

HINT

对于100%的数据:1 ≤ n, m ≤ 100,000。



#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define N 100010
LL n,m,tot=0,ans=0;
LL pri[N],mu[N],F[N];
bool mark[N]={0};
void init(){
mu[1]=1;
for(int i=2;i<N;i++){
if(!mark[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&pri[j]*i<N;j++){
mark[pri[j]*i]=1;
if(i%pri[j]==0){
mu[i*pri[j]]=0;
break;
}else mu[i*pri[j]]=-mu[i];
}
}
for(int i=1;i<N;i++)F[i]=F[i-1]+mu[i];
}
LL solve(int d){
LL res=0,n1=n/d,m1=m/d,up=min(n1,m1);
for(int i=1,j;i<=up;i=j+1){
j=min(n1/(n1/i),m1/(m1/i));
res+=(F[j]-F[i-1])*(n1/i)*(m1/i);
}
return res*d;
}
int main(){
init();
scanf("%lld%lld",&n,&m);
int up=min(n,m);
for(int i=1;i<=up;i++)ans+=solve(i);
ans*=2;
ans-=n*m;
printf("%lld",ans);
return 0;
}

但是我们发现这样做似乎不是最优秀的

然后定义k=d∗pk=d∗p
转换一下:
ans=−n∗m+2∗∑min(n,m)d=1d∑min(n,m)d|kμ(k/d)⌊nk⌋⌊mk⌋ans=−n∗m+2∗∑d=1min(n,m)d∑d|kmin(n,m)μ(k/d)⌊nk⌋⌊mk⌋

把k提到前面枚举:

ans=−n∗m+2∗∑min(n,m)k=1∑min(n,m)d|kdμ(k/d)⌊nk⌋⌊mk⌋ans=−n∗m+2∗∑k=1min(n,m)∑d|kmin(n,m)dμ(k/d)⌊nk⌋⌊mk⌋

ans=−n∗m+2∗∑min(n,m)k=1∑min(n,m)d|kkdμ(d)⌊nk⌋⌊mk⌋ans=−n∗m+2∗∑k=1min(n,m)∑d|kmin(n,m)kdμ(d)⌊nk⌋⌊mk⌋

ans=−n∗m+2∗∑min(n,m)k=1⌊nk⌋⌊mk⌋∑min(n,m)d|kkdμ(d)ans=−n∗m+2∗∑k=1min(n,m)⌊nk⌋⌊mk⌋∑d|kmin(n,m)kdμ(d)

然后我们发现∑min(n,m)d|kkdμ(d)∑d|kmin(n,m)kdμ(d)是可以线性筛的

时间复杂度O(n)预处理+O(sqrt(n))查询O(n)预处理+O(sqrt(n))查询

#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define N 100010
LL n,m,tot=0,ans=0;
LL pri[N],mu[N],F[N];
bool mark[N]={0};
void init(){
mu[1]=1;
for(int i=2;i<N;i++){
if(!mark[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&pri[j]*i<N;j++){
mark[pri[j]*i]=1;
if(i%pri[j]==0){
mu[i*pri[j]]=0;
break;
}else mu[i*pri[j]]=-mu[i];
}
}
for(int i=1;i<N;i++)
for(int j=1;j*i<N;j++)
F[i*j]+=mu[i]*j;
for(int i=1;i<N;i++)F[i]+=F[i-1];
}
int main(){
init();
scanf("%lld%lld",&n,&m);
int up=min(n,m);
for(int i=1,j;i<=up;i=j+1){
j=min(n/(n/i),m/(m/i));
ans+=(F[j]-F[i-1])*(n/i)*(m/i);
}
ans*=2;
ans-=n*m;
printf("%lld",ans);
return 0;
}

然后我们发现可能代码2比代码1慢?为什么呢?
因为预处理的时候失去了线性的性质

但是当查询很多的时候代码优势就得以凸显

各取所需吧

BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】的更多相关文章

  1. BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛

    分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...

  2. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  3. luogu1447 [NOI2010]能量采集 莫比乌斯反演

    link 冬令营考炸了,我这个菜鸡只好颓废数学题了 NOI2010能量采集 由题意可以写出式子: \(\sum_{i=1}^n\sum_{j=1}^m(2\gcd(i,j)-1)\) \(=2\sum ...

  4. BZOJ 2005: [Noi2010]能量采集 [莫比乌斯反演]

    题意:\((0,0)\)到\((x,y),\ x \le n, y \le m\)连线上的整点数\(*2-1\)的和 \((0,0)\)到\((a,b)\)的整点数就是\(gcd(a,b)\) 因为. ...

  5. bzoj2005: [Noi2010]能量采集

    lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...

  6. [BZOJ2005][Noi2010]能量采集 容斥+数论

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4394  Solved: 2624[Submit][Statu ...

  7. 【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集

    Description 求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m.n, m<=1e5. Solution f(n)为gcd正好是n的(x, ...

  8. BZOJ2005: [Noi2010]能量采集(容斥原理 莫比乌斯反演)

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 4727  Solved: 2877[Submit][Status][Discuss] Descript ...

  9. [bzoj2005][Noi2010][能量采集] (容斥 or 欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

随机推荐

  1. Maximal Rectangle, 求矩阵中最大矩形,参考上一题

    问题描述: Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1 ...

  2. RestTemplate请求https忽略证书认证

    RestTemplate是Spring提供的用于访问Rest服务的客户端,提供了多种便捷访问远程Http服务的方法,能够大大提高客户端的编写效率.RestTemplate 默认使用J2SE提供的方式( ...

  3. shell 条件语句

    shell 条件语句 #!/bin/bash # 条件语句 NUM1=100 NUM2=200 if (($NUM1 > $NUM2));then echo "$NUM1 greate ...

  4. LeetCode第[84]题(Java):Largest Rectangle in Histogram(最大的矩形柱状图)

    题目:最大的矩形柱状图 难度:hard 题目内容: Given n non-negative integers representing the histogram's bar height wher ...

  5. Win7 64位安装VS2013无法连接远程数据库

    win7 64位安装vs2013后连接远程数据库出现下面的问题:A first chance exception of type 'System.AccessViolationException' o ...

  6. [spring]xml配置文件中bean属性的两种写法(p:configLocation <=> <property name="configLocation"/>)

    1.当作bean节点的属性:p:configLocation: <!-- mybatis文件配置,扫描所有mapper文件 --> <bean id="sqlSession ...

  7. 你真的掌握 LVS、Nginx 及 HAProxy 的工作原理吗

    你真的掌握 LVS.Nginx 及 HAProxy 的工作原理吗 当前大多数的互联网系统都使用了服务器集群技术,集群是将相同服务部署在多台服务器上构成一个集群整体对外提供服务,这些集群可以是 Web ...

  8. webstrom提示不见了

    今天做项目时候,不知道怎么搞的我的神编辑器webstrom没有了代码提示!!! 重启软件.重启电脑甚至卸载重装都不行,研究了半天终于知道问题出在了哪: 后来我发现在Webstorm的菜单[File]里 ...

  9. POJ 1160 经典区间dp/四边形优化

    链接http://poj.org/problem?id=1160 很好的一个题,涉及到了以前老师说过的一个题目,可惜没往那上面想. 题意,给出N个城镇的地址,他们在一条直线上,现在要选择P个城镇建立邮 ...

  10. Java截取图片的一部分并保存为40*40的图片

    @Test public void testImag() { try { String path = "E:/flower2.jpg"; int x = 11, y = 20, c ...