Subset
Time Limit: 30000MS   Memory Limit: 65536K
Total Submissions: 5721   Accepted: 1083

Description

Given a list of N integers with absolute values no larger than 1015, find a non empty subset of these numbers which minimizes the absolute value of the sum of its elements. In case there are multiple subsets, choose the one with fewer elements.

Input

The input contains multiple data sets, the first line of each data set contains N <= 35, the number of elements, the next line contains N numbers no larger than 1015 in absolute value and separated by a single space. The input is terminated with N = 0

Output

For each data set in the input print two integers, the minimum absolute sum and the number of elements in the optimal subset.

Sample Input

1
10
3
20 100 -100
0

Sample Output

10 1
0 2

Source

 

题意:给你一个含n(n<=35)个数的数组,让你在数组中选出一个非空子集,使其元素和的绝对值最小,输出子集元素的个数以及元素和的绝对值,若两个子集元素和相等,输出元素个数小的那个。

思路:如果直接暴力枚举,复杂度O(2^n),n为35时会超时,故可以考虑折半枚举,利用二进制将和以及元素个数存在两个结构体数组中,先预判两个结构体是否满足题意,再将其中一个元素和取相反数后排序,因为总元素和越接近零越好,再二分查找即可,用lower_bound时考虑查找到的下标和他前一个下标,比较元素和以及元素个数,不断更新即可。

详见代码注释

poj的long long abs要自己写

 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
struct Z
{
long long int x;
int y;
bool operator < (const Z& b)const
{
if (x != b.x)
return x < b.x;
return y<b.y; }
}a[], b[]; long long int c[]; long long int abs1(long long int x)
{
if (x<)
return -x;
return x;
} int main()
{
int n;
int i,j;
while (cin >> n && n)
{
for (i = ; i < ; i++)
{
a[i].x = a[i].y = b[i].x = b[i].y = ;
}
long long sum = 1e17;
int ans = ;
for (i = ; i < n; i++)
{
cin >> c[i];
}
int n1 = n / ;
for (i = ; i < ( << n1); i++)//二进制枚举一半,共2的n1次方种
{
for (j = ; j < n1; j++)
{
if (i >> j& && (i != || j != ))//这一半中的所有情况列出来
{
a[i - ].x+= c[j];
a[i - ].y++;//记录这个数含有几个元素
}
}
}
int n2 = n - n1;
for (i = ; i < ( << n2); i++)//同理初始化
{
for (j = ; j < n2; j++)
{
if (i >> j & && (i != || j != ))
{
b[i - ].x += c[j + n1];
b[i - ].y++;
}
}
}
//对这两半单独检查更新最小和sum和最小元素数ans
for (i = ; i < ( << n1) - ; i++)//?
{
if (abs1(a[i].x) < sum)
{
sum = abs1(a[i].x);
ans = a[i].y;
}
else if (abs1(a[i].x) == sum && a[i].y < ans)
{
ans=a[i].y;
sum = abs1(a[i].x);
}
} for (i = ; i<( << n1) - ; i++)//前半部分变为相反数
a[i].x = -a[i].x;
for (i = ; i<( << n2) - ; i++) //另一半检查
{
if (abs1(b[i].x)<sum)
{
sum = abs1(b[i].x);
ans = b[i].y;
}
else if (abs1(b[i].x) == sum && b[i].y<ans)
{
ans = b[i].y;
sum = abs1(b[i].x);
}
} sort(a, a + ( << n1) - );
sort(b, b + ( << n2) - ); for (i = ; i < ( << n1)-; i++)//两半合起来检查
{
int t = lower_bound(b, b + ( << n2) - , a[i])- b;//t是序号
if (t > )//查看该序号周围的数
{
if (abs1(b[t - ].x - a[i].x) < sum)//和可以更小
{
sum = abs1(b[t - ].x - a[i].x);//更新最小绝对值和
ans = b[t - ].y + a[i].y;//更新元素个数
}
else if (abs1(b[t - ].x - a[i].x) == sum && b[t - ].y + a[i].y < ans)//元素个数可以更小
{
sum = abs1(b[t - ].x - a[i].x);
ans = b[t - ].y + a[i].y;
}
}
if (t < ( << n2) - )
{
if (abs1(b[t].x - a[i].x) < sum)
{
sum = abs1(b[t].x - a[i].x);
ans = b[t].y + a[i].y;
}
else if (abs1(b[t].x - a[i].x) == sum && b[t].y + a[i].y<ans)
{
sum = abs1(b[t].x - a[i].x);
ans = b[t].y + a[i].y;
}
}
}
cout << sum << " " << ans << endl;
}
return ;
}

poj 3977 Subset(折半枚举+二进制枚举+二分)的更多相关文章

  1. POJ 3977 - subset - 折半枚举

    2017-08-01 21:45:19 writer:pprp 题目: • POJ 3977• 给定n个数,求一个子集(非空)• 使得子集内元素和的绝对值最小• n ≤ 35 AC代码如下:(难点:枚 ...

  2. POJ 3977 Subset(折半枚举+二分)

    SubsetTime Limit: 30000MS        Memory Limit: 65536KTotal Submissions: 6754        Accepted: 1277 D ...

  3. [poj] 3977 Subset || 折半搜索MITM

    原题 给定N个整数组成的数列(N<=35),从中选出一个子集,使得这个子集的所有元素的值的和的绝对值最小,如果有多组数据满足的话,选择子集元素最少的那个. n<=35,所以双向dfs的O( ...

  4. POJ 3977 Subset | 折半搜索

    题目: 给出一个整数集合,求出非空子集中元素和绝对值最小是多少(元素个数尽量少) 题解: 分成两半 爆搜每一半,用map维护前一半的值 每搜出后一半的一个值就去map里找和他和绝对值最小的更新答案 # ...

  5. POJ.3279 Fliptile (搜索+二进制枚举+开关问题)

    POJ.3279 Fliptile (搜索+二进制枚举+开关问题) 题意分析 题意大概就是给出一个map,由01组成,每次可以选取按其中某一个位置,按此位置之后,此位置及其直接相连(上下左右)的位置( ...

  6. POJ - 3977 Subset(二分+折半枚举)

    题意:有一个N(N <= 35)个数的集合,每个数的绝对值小于等于1015,找一个非空子集,使该子集中所有元素的和的绝对值最小,若有多个,则输出个数最小的那个. 分析: 1.将集合中的元素分成两 ...

  7. POJ 3279 Fliptile(反转 +二进制枚举)

    Fliptile Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13631   Accepted: 5027 Descrip ...

  8. 【折半枚举+二分】POJ 3977 Subset

    题目内容 Vjudge链接 给你\(n\)个数,求出这\(n\)个数的一个非空子集,使子集中的数加和的绝对值最小,在此基础上子集中元素的个数应最小. 输入格式 输入含多组数据,每组数据有两行,第一行是 ...

  9. POJ 1753 Flip Game(二进制枚举)

    题目地址链接:http://poj.org/problem?id=1753 题目大意: 有4*4的正方形,每个格子要么是黑色,要么是白色,当把一个格子的颜色改变(黑->白或者白->黑)时, ...

随机推荐

  1. yii2 联系我们发送邮件报错

    为什么会报错,因为国内的邮件服务商要求发送邮件的人和设置的smtp服务器账号要相同,因为联系我们的是用户,也就是发件人是用户,而不是我们配置的邮箱,所有出错. 这里我用了个取巧的办法,发件人改为自己, ...

  2. iOS开发:MKMapView地图内存持续增加的释放解决办法

    内存持续增加的释放解决办法 最近修改一个用到MKMapView的项目,内存一直占用过多,每次拖拽地图时还会增加占用,且一直无法释放. 经过两天的排查,最后锁定是创建的self.map对象在加载地图的时 ...

  3. Linux真随机数的生成

    今天看<白帽子讲WEB安全>一书,看到笔者谈到Linux如何实现真随机数生成,感觉非常有用,记录下来 #include<iostream> using namespace st ...

  4. React 与 可视化

    一般会想到 canvas 和 svg ; svg更适合画图, 但由于cavans在移动端的良好兼容性, 使用的更广; 什么是svg, scalable vector graphics  全称 可缩放矢 ...

  5. 微信测试帐号如何设置URL和Token,以及相关验证的原理

    首先说明,本帮助文档是利用javaweb的Servlet来进行“接口配置信息配置信息”认证的. 在学习微信公众号开发的时候,读到填写服务器配置的帮助部分,总是不能理解为啥按照他的步骤做总是设置失败(吐 ...

  6. (转) MapReduce Design Patterns(chapter 2 (part 1))(二)

     CHAPTER 2 .Summarization Patterns 随着每天都有更多的数据加载进系统,数据量变得很庞大.这一章专注于对你的数据顶层的,概括性意见的设计模式,从而使你能扩展思路,但可能 ...

  7. oracle的JOB

    前文再续,上面说的oracle的JOB,近期有些体会,记录一下: 零.创建JOB 创建JOB 1)创建一个存储过程.逻辑处理都在这个存储过程里面. 2)创建一个JOB运行此存储过程 -- 创建tabl ...

  8. rabbitmq安装部署

    本文主要介绍rabbitmq-server-3.6.12的安装部署 #  检查是否已经安装旧版本的软件 rpm -qa|grep erlang rpm -qa|grep rabbitmq # 如果之前 ...

  9. 在IIS上搭建FTP站点

    操作环境 系统:win7 IIS版本:7.5 FTP传输工具:FlashXP 概述 本文介绍了如何在win7下利用IIS(默认已安装IIS和FTP功能)搭建FTP站点,FTP站点的常用配置. 快速搭建 ...

  10. 浅谈Eclipse调用Tomcat服务的原理

    浅谈Eclipse调用Tomcat服务的原理 转:http://www.thinksaas.cn/group/topic/341645/ 转:http://www.173it.cn/Html/?581 ...