1146 Topological Order (25 分)

This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 1,000), the number of vertices in the graph, and M (≤ 10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (≤ 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.

Output Specification:

Print in a line all the indices of queries which correspond to "NOT a topological order". The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.

Sample Input:

6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
5
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6

Sample Output:

3 4

题目大意:给出一个有向图,并且给定K个序列,判断这个序列是否是拓扑序列。

//我一看见我想的就是,得用邻接表存储图,然后对每一个输入的序列,都进行判断,基本上复杂度是非常高的,就是对每一个序列中的数,判断其之前出现的每一个数是否是它的next,这样来判断,然后写的不对。

#include <iostream>
#include<vector>
#include<map>
#include<algorithm>
using namespace std; vector<vector<int>> graph;
int main(){
int n,m;
cin>>n>>m;
graph.resize(n+);
int f,t;
for(int i=;i<m;i++){
cin>>f>>t;
graph[f].push_back(t);//因为是单向图
}
int u;
cin>>u;
vector<int> vt(n);
vector<int> ans;
for(int i=;i<u;i++){//复杂度是O(n^2),稍微有点高啊。
for(int j=;j<n;j++)
cin>>vt[j];
//检查在其之前出现的是否是在这个图的next里。
bool flag=true;
for(int j=;j<n;j++){
for(int k=;k<j;k++){//在这还得遍历vt[j]
for(int v=;v<graph[j].size();v++){
if(vt[k]==graph[j][v]){
cout<<vt[k]<<" "<<graph[j][v]<<"\n";
ans.push_back(i);
flag=false;
break;
}
}
if(!flag)break;
}
if(!flag)break;
}
}
for(int i=;i<ans.size();i++){
cout<<ans[i];
if(i!=ans.size()-)cout<<' ';
} return ;
}

结果:

//真的很奔溃啊,怎么每个都是不对的,那个2 2 到底是什么意思?我明天再看看吧。

//柳神的代码:

//根据入度出度来判断,非常可以了。。

学习了,要多复习。

PAT 1146 Topological Order[难]的更多相关文章

  1. [PAT] 1146 Topological Order(25 分)

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  2. PAT 1146 Topological Order

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  3. PAT 甲级 1146 Topological Order (25 分)(拓扑较简单,保存入度数和出度的节点即可)

    1146 Topological Order (25 分)   This is a problem given in the Graduate Entrance Exam in 2018: Which ...

  4. PAT 甲级 1146 Topological Order

    https://pintia.cn/problem-sets/994805342720868352/problems/994805343043829760 This is a problem give ...

  5. PAT甲级——1146 Topological Order (25分)

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  6. PAT A1146 Topological Order (25 分)——拓扑排序,入度

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  7. 1146. Topological Order (25)

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  8. 1146 Topological Order

    题意:判断序列是否为拓扑序列. 思路:理解什么是拓扑排序就好了,简单题.需要注意的地方就是,因为这里要判断多个,每次判断都会改变入度indegree[],因此记得要把indegree[]留个备份.ps ...

  9. PAT_A1146#Topological Order

    Source: PAT A1146 Topological Order (25 分) Description: This is a problem given in the Graduate Entr ...

随机推荐

  1. centos6.5 系统上升级2.6.6到2.7.12

    因开发需要,今天把CentOS 6.4自带的Python2.6.6升级到了Python2.7.3.按照如下步骤进行升级 1.查看当前系统python的版本 python -V 2.下载2.7.3版本的 ...

  2. 在Swing的组件中,基本上都是在AWT组件的名称前面加“J”

    在Swing的组件中,基本上都是在AWT组件的名称前面加“J”. 一般情况下,除了Choise等组件: import javax.swing.*;好要加上:import java.awt.*以及imp ...

  3. 还是PHPExcel问题

    //设置自动设置宽度,但是对中文不起作用..(中文自动长还在研究当中) $objPHPExcel->getActiveSheet()->getColumnDimension('A')-&g ...

  4. Huber-Markov先验模型相关

    随机概率重建-MAP算法 随机概率重建:利用贝叶斯理论作为框架,理想图像的先验知识作为约束条件进行图像重建.常用的随机概率超分辨率重建包括最大后验概率估计法(MAP)和极大似然估计法(ML). MAP ...

  5. JavaScript第三天 boolean和json

    布尔值 true:非零数字.非空字符串.非空对象 false:数字零.空字符串.null空对象.undefined  json JSON(JavaScript Object Notation) 是一种 ...

  6. Sublime Text2.0.2注冊码

    // Sublime Text 3 License Keys // Sublime Text 2.x -– BEGIN LICENSE -– Andrew Weber Single User Lice ...

  7. 从远程(包括ftp,http等协议)地址获取文件流信息

    URL url = new URL("ftp://172.18.251.155:8010/recordsImg/2019-01-28/000008_1548649813267.jpg&quo ...

  8. php做图片上传功能

    今天来做一个图片上传功能的插件,首先做一个html文件:text.php <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transition ...

  9. 【BZOJ1855】[Scoi2010]股票交易 DP+单调队列

    [BZOJ1855][Scoi2010]股票交易 Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预 ...

  10. C++编译遇到参数错误(cannot convert parameter * from 'const char [**]' to 'LPCWSTR')

    转:http://blog.sina.com.cn/s/blog_9ffcd5dc01014nw9.html 前面的几天一直都在复习着被实习落下的C++基础知识.今天在复习着上次创建的窗口程序时,出现 ...