HDU_5536_Chip Factory
Chip Factory
Time Limit: 18000/9000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 3702 Accepted Submission(s): 1622
At the end of the day, he packages all the chips produced this day, and send it to wholesalers. More specially, he writes a checksum number on the package, this checksum is defined as below:
which i,j,k are three different integers between 1 and n. And ⊕ is symbol of bitwise XOR.
Can you help John calculate the checksum number of today?
The first line of each test case is an integer n, indicating the number of chips produced today. The next line has n integers s1,s2,..,sn, separated with single space, indicating serial number of each chip.
1≤T≤1000
3≤n≤1000
0≤si≤109
There are at most 10 testcases with n>100
3
1 2 3
3
100 200 300
400
- 题中存在XOR运算,往二进制运算考虑
- 好吧,这题时间宽泛,n3复杂度8000ms可以过
- 考虑对于一个正整数的二进制形式的01字串A
- 如果用01字串B和A做XOR运算,考虑最优情况,应该是对应位置Ai!=Bi
- 那么如果我们n2枚举Si+Sj,接下来如果有一个可以反映剩下数的每个位置01状态的数据结构,我们就可以贪心地在每一步挑选最优策略
- 原始的十进制整数下的整数状态是不可能的,但是我们可以以二进制的形式对原始整数做tire就可以达到对剩余整数的一个数据压缩的效果
- 方法出来了,就是做二进制字典树,然后n2枚举和,贪心搜索tire
- 这里对于tire的建立最好是从高位开始建,原因嘛,恩本鶸从低位建树WA了,改成高位建树就AC了
#include <iostream>
#include <string>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <climits>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
typedef long long LL ;
typedef unsigned long long ULL ;
const int maxn = 1e6 + ;
const int inf = 0x3f3f3f3f ;
const int npos = - ;
const int mod = 1e9 + ;
const int mxx = + ;
const double eps = 1e- ;
const double PI = acos(-1.0) ; struct node{
int cnt;
int go[];
LL val;
};
node state[maxn<<];
int tot, root;
void add(LL w){
int cur=root;
state[cur].cnt++;
for(int i=;i>=;i--){
int k=(<<i)&w?:;
if(!state[cur].go[k]){
tot++;
state[cur].go[k]=tot;
memset(&state[tot],,sizeof(state[tot]));
}
cur=state[cur].go[k];
state[cur].cnt++;
}
state[cur].val=w;
}
void del(LL w){
int cur=root;
state[cur].cnt--;
for(int i=;i>=;i--){
int k=(<<i)&w?:;
cur=state[cur].go[k];
state[cur].cnt--;
}
}
LL search(LL w){
int cur=root;
for(int i=;i>=;i--){
int k=(<<i)&w?:;
if(state[state[cur].go[k^]].cnt){
cur=state[cur].go[k^];
}else{
cur=state[cur].go[k];
}
}
return w^state[cur].val;
}
int T, n;
LL a[maxn], ans;
int main(){
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
while(~scanf("%d",&T)){
while(T--){
root=;
tot=;
ans=-1LL;
memset(&state[],,sizeof(state[]));
memset(&state[root],,sizeof(state[root]));
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%lld",&a[i]);
add(a[i]);
}
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++){
del(a[i]);
del(a[j]);
ans=max(ans,search(a[i]+a[j]));
add(a[i]);
add(a[j]);
}
printf("%lld\n",ans);
}
}
return ;
}
HDU_5536_Chip Factory的更多相关文章
- PHP设计模式(三)抽象工厂模式(Abstract Factory For PHP)
一.什么是抽象工厂模式 抽象工厂模式的用意为:给客户端提供一个接口,可以创建多个产品族中的产品对象 ,而且使用抽象工厂模式还要满足以下条件: 系统中有多个产品族,而系统一次只可能消费其中一族产品. 同 ...
- PHP设计模式(一)简单工厂模式 (Simple Factory For PHP)
最近天气变化无常,身为程序猿的寡人!~终究难耐天气的挑战,病倒了,果然,程序猿还需多保养自己的身体,有句话这么说:一生只有两件事能报复你:不够努力的辜负和过度消耗身体的后患.话不多说,开始吧. 一.什 ...
- 菜鸟理解的工厂模式(Factory Pattern)是什么样子的?
直接开始说了,不浪费园友宝贵的时间! 什么是工厂模式? 在学习前,先问一下:"它是什么?". 工厂模式,它是项目里面常用的设计模式之一. 它是属于创建型模式,简单的理解创建型模式就 ...
- Angular Service和Factory应用的区别
Service可以用来将返回同类业务的多种返回值 Factory可以用来提供对同类业务的多个方法的调用 另外:Provider可以用来封装各独立职责
- 【解决方案】 org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'userHandler': Injection of resource dependencies failed;
一个错误会浪费好多青春绳命 鉴于此,为了不让大家也走弯路,分享解决方案. [错误代码提示] StandardWrapper.Throwableorg.springframework.beans.fac ...
- Design Patterns Simplified - Part 3 (Simple Factory)【设计模式简述--第三部分(简单工厂)】
原文链接:http://www.c-sharpcorner.com/UploadFile/19b1bd/design-patterns-simplified-part3-factory/ Design ...
- C#设计模式之简单工厂模式(Simple Factory)
1. 概述 简单工厂模式就是将一个类的实例化交给一个静态工厂来执行. 2. 使用频率 中 3. 模式结构 3.1 机构图 3.2 模式中的角色 Product:抽象类,把具体产品类公共的代码进行抽象和 ...
- Task.Factory.StartNew的用法
代码: private void button5_Click(object sender, EventArgs e) { ; Task.Factory.StartNew(() => { Mess ...
- 使用Setup Factory安装包制作工具制作安装包
在我们开发完软件后,除了极个别案例我们把整个目录复制给客户用外,我们一般都需要做成安装包,方便整个软件的部署操作,以安装包的部署操作可能简单的是复制文件,也可能包括一些注册表.数据库等额外的操作,不过 ...
随机推荐
- [转]James Bach:测试人员的角色
[转]James Bach:测试人员的角色 2015-05-13 以前,我是个开发人员.我不喜欢这个工作,无尽的压力让我疲惫.我几乎从未感觉到自己的工作做得足够好.我从未有过真正的休息.如果我没做好, ...
- C++函数默认参数(转)
在代码中使用到了函数的默认参数,在函数的定义和实现中都填写的默认参数,结果出现了错误: 代码: #ifndef FIRSTPAGE_H #define FIRSTPAGE_H #include < ...
- getAttribute()方法
http://www.imooc.com/code/1587 getAttribute()方法 通过元素节点的属性名称获取属性的值. 语法: elementNode.getAttribute(name ...
- 单调栈poj2796
题意:给你一段区间,需要你求出(在这段区间之类的最小值*这段区间所有元素之和)的最大值...... 例如: 6 3 1 6 4 5 2 以4为最小值,向左右延伸,6 4 5 值为60....... ...
- 关于锚点(anchorPoint)的一些理解
默认来说,锚点位于图层的中点.对锚点一直不太了解是怎么移动的,有时候搞明白过不久碰到了又是懵逼,这次专门记录下来自己的一些理解,有不对的也请指教一下.就用下张图来简单的说明,每个视图的左上角锚点位置为 ...
- 方程式漏洞之复现window2008/win7 远程命令执行漏洞
前几天就想写的,因为一些缘故就没写.此次是在外网环境下进行的.大家在内网中也一个样. 方法: 使用Eternalblue模块,剑测是否有漏洞然后msf生成一个dll直接反弹shell. PS:win版 ...
- 计算机网络——OSI、TCP/IP协议族详解
一.OSI七层协议体系结构域TCP/IP四层体系结构对比 ISO/OSI模型,即开放式通信系统互联参考模型(Open System Interconnection Reference Model),是 ...
- ubuntu下更改分辨率
在虚拟机中装了ubuntu但是没有1600*900的分辨率 第一步: xrandr -q 查看现在系统中所有的分辨率 第二步: cvt 1600 900 得到所需的更改分辨率数据 第三步: ww ...
- 人脸验证算法Joint Bayesian详解及实现(Matlab)
python http://blog.csdn.net/cyh_24/article/details/49059475 github https://github.com/johnnyconstant ...
- git fork同步是什么意思?
这篇文章主要介绍了git fork同步是什么意思?fork到了哪里?有什么用?怎样用?跟clone有什么差别?本文就一一解释这些问题,须要的朋友能够參考下 官方文档:http://help.githu ...