bzoj 2038 小Z的袜子 莫队算法
题意
给你一个长度序列,有多组询问,每次询问(l,r)任选两个数相同的概率。n <= 50000,数小于等于n。
莫队算法裸题。
莫队算法:将序列分为根号n段,将询问排序,以L所在的块为第一关键字,R为第二关键字排序,以次处理询问O(n^1.5)
由于是按L所在的块为第一关键字、R为第二关键字排序的,所以在每块内L的变化最多为n,总O(n^1.5);R在每块内递增,每块内变化最多为n,总O(n^1.5),故O(n^1.5)。
具体可以抽象为二维的点来理解。
概率p = sigma(c[i]*(c[i]-1))/(r-l+1) = (sigma(c[i]*c[i])-(r-l+1))/(r-l+1),c[i]为区间中数i的个数,只需要维护sigma(c[i]*c[i])即可。
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <iostream>
#include <cmath> using namespace std; typedef long long LL;
const int maxn = ;
int n, m, a[maxn], pos[maxn];
LL s[maxn], ansA[maxn], ansB[maxn], sum; struct Query{
int l, r, id;
Query(int l = , int r = , int id = ):
l(l), r(r), id(id) {}
bool operator < (const Query &AI) const{
if (pos[l] == pos[AI.l])
return r < AI.r;
return pos[l] < pos[AI.l];
}
}b[maxn]; void update(int p, LL d){
sum -= s[p]*s[p];
s[p] += d;
sum += s[p]*s[p];
} LL gcd(LL x, LL y){
if (y == )
return x;
return gcd(y, x%y);
} void work(){
for (int i = , l = , r = ; i <= m; ++i){
for (; l < b[i].l; ++l)
update(a[l], -1LL);
for (; l > b[i].l; --l)
update(a[l-], 1LL);
for (; r < b[i].r; ++r)
update(a[r+], 1LL);
for (; r > b[i].r; --r)
update(a[r], -1LL);
if (l == r){
ansA[b[i].id] = , ansB[b[i].id] = ;
continue ;
}
ansA[b[i].id] = sum-(r-l+);
ansB[b[i].id] = LL(r-l+)*LL(r-l);
LL k = gcd(ansA[b[i].id], ansB[b[i].id]);
ansA[b[i].id] /= k, ansB[b[i].id] /= k;
}
} int main(){
scanf("%d %d", &n, &m);
for (int i = ; i <= n; ++i)
scanf("%d", &a[i]);
for (int i = ; i <= m; ++i)
scanf("%d %d", &b[i].l, &b[i].r), b[i].id = i;
int block = int(sqrt(n));
for (int i = ; i <= n; ++i)
pos[i] = (i-)/block+;
sort(b+, b+m+);
work();
for (int i = ; i <= m; ++i)
printf("%lld/%lld\n", ansA[i], ansB[i]);
return ;
}
bzoj 2038 小Z的袜子 莫队算法的更多相关文章
- BZOJ 2038 小z的袜子 & 莫队算法(不就是个暴力么..)
题意: 给一段序列,询问一个区间,求出区间中.....woc! 贴原题! 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过 ...
- bzoj 2038 小z的袜子 莫队例题
莫队,利用可以快速地通过一个问题的答案得到另一问题的答案这一特性,合理地组织问题的求解顺序,将已解决的问题帮助解决当前问题,来优化时间复杂度. 典型用法:处理静态(无修改)离线区间查询问题. 线段树也 ...
- bzoj 2308 小Z的袜子(莫队算法)
小Z的袜子 [题目链接]小Z的袜子 [题目类型]莫队算法 &题解: 莫队算法第一题吧,建议先看这个理解算法,之后在参考这个就可以写出简洁的代码 我的比第2个少了一次sort,他的跑了1600m ...
- bzoj 2038 小z的袜子 莫队
莫队大法好,入坑保平安 只要能O(1)或O(log)转移,离线莫队貌似真的无敌. #include<cstdio> #include<iostream> #include< ...
- 【国家集训队2010】小Z的袜子[莫队算法]
[莫队算法][国家集训队2010]小Z的袜子 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程, ...
- [日常摸鱼]bzoj2038[2009国家集训队]小Z的袜子-莫队算法
今天来学了下莫队-这题应该就是这个算法的出处了 一篇别人的blog:https://www.cnblogs.com/Paul-Guderian/p/6933799.html 题意:一个序列,$m$次询 ...
- Luogu 1494 - 小Z的袜子 - [莫队算法模板题][分块]
题目链接:https://www.luogu.org/problemnew/show/P1494 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天 ...
- 小Z的袜子 & 莫队
莫队学习 & 小Z的袜子 引入 莫队 由莫涛巨佬提出,是一种离线算法 运用广泛 可以解决广大的离线区间询问题 莫队的历史 早在mt巨佬提出莫队之前 类似莫队的算法和莫队的思想已在Codefor ...
- BZOJ 2038 [2009国家集训队]小Z的袜子 莫队
2038: [2009国家集训队]小Z的袜子(hose) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Descriptionw ...
随机推荐
- Linux 脚本内容指定用户执行
#!/bin/bash set -x ## 因为这些变量在下面要用,所以要写在最上面, ## 如果直接写在下面,则变量获取不到,并且下面的 $ 标识的都要用 引号引起来,否则这些参数接收不到 tarf ...
- 【swupdate文档 三】SWUpdate: 嵌入式系统的软件升级
SWUpdate: 嵌入式系统的软件升级 概述 本项目被认为有助于从存储媒体或网络更新嵌入式系统.但是,它应该主要作为一个框架来考虑,在这个框架中可以方便地向应用程序添加更多的协议或安装程序(在SWU ...
- javascript反混淆之packed混淆(二)
上次我们简单的入门下怎么使用html破解packed的混淆,下面看一个综合案例. 上次内容javascript反混淆之packed混淆(一) function getKey() { var aaaaf ...
- Netty并发优化之ExecutionHandler
上文<Netty框架入门>说到:如果业务处理handler耗时长,将严重影响可支持的并发数. 针对这一问题,经过学习,发现了可以使用ExecutionHandler来优化. 先来回顾一下没 ...
- 最小的Django应用
创建一个hello.py 内容如下: import sys from django.conf import settings # 设置 settings.configure( DEBUG = Tr ...
- Ubuntu下Hadoop的安装和配置
最近又需要要搭hadoop环境,所以开始学习,下面是我的笔记,仅供大家参考! Hadoop安装: JDK1.6+ 操作系统:Linux,Window和Unix也可以做Hadoop的开发,只有Linux ...
- POJ 2349 Arctic Network(最小生成树+求第k大边)
题目链接:http://poj.org/problem?id=2349 题目大意:有n个前哨,和s个卫星通讯装置,任何两个装了卫星通讯装置的前哨都可以通过卫星进行通信,而不管他们的位置. 否则,只有两 ...
- 关于WordPress登录后跳转到指定页面
前面在写模版的时候,有朋友要求网站登录后要跳转的到指定的页面.这个从前还真没遇到过.于是就用万能的搜索(很少百度)找了下,方法基本上就是一个,代码如下: <?php // Fields f ...
- [BZOJ3150][Ctsc2013]猴子 期望dp+高斯消元
3150: [Ctsc2013]猴子 Time Limit: 20 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 163 Solved: 10 ...
- [原创] 基于RDP的桌面广播
之前写过一篇使用C# UDP 组播技术做的桌面广播实现, C# 使用UDP组播实现局域网桌面共享.最终效果差强人意,UDP包在不同的交换机上发送还会出现发送失败的情况,所以又重新研究了一些新的方法,包 ...