【题意】给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分)。n<=500。

【算法】期望+高斯消元

【题解】显然,应使经过次数越多的边编号越小,问题转化为求每条边的期望经过次数。

边数太多,容易知道f(u,v)=f(u)/out(u)+f(v)/out(v),所以转化为求每个点的期望经过次数,这就是驱逐猪猡了。

设f[x]表示点x的期望经过次数,根据全期望公式(讨论“经过“的问题不能依赖于下一步):

$$f[x]=\sum_{y}\frac{f[y]}{out[y]} \ \ , \ \ y \rightarrow x$$

最后f[1]++,f[n]=0。(点1一开始就经过一次,点n不能重新出来,所以设成0不然会影响别的点)

复杂度O(n^3)。

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=,M=;//
int n,m,out[maxn],u[M],v[M],c[M];
double a[maxn][maxn],b[M];
void gauss(){
for(int i=;i<n;i++){
int r=i;
for(int j=i+;j<=n;j++)if(fabs(a[j][i])>fabs(a[r][i]))r=j;
if(r!=i)for(int j=i;j<=n+;j++)swap(a[r][j],a[i][j]);
for(int j=i+;j<=n;j++){
for(int k=n+;k>=i;k--){
a[j][k]-=a[j][i]/a[i][i]*a[i][k];//
}
}
}
for(int i=n;i>=;i--){
for(int j=i+;j<=n;j++)a[i][n+]-=a[i][j]*a[j][n+];
a[i][n+]/=a[i][i];
}
}
bool cmp(double a,double b){return a>b;}
int main(){
freopen("input6.txt","r",stdin);
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
scanf("%d%d",&u[i],&v[i]);
a[u[i]][v[i]]++;out[u[i]]++;
if(u[i]!=v[i])a[v[i]][u[i]]++,out[v[i]]++;
}
for(int i=;i<=n;i++){
for(int j=;j<=n;j++)if(out[j])a[i][j]/=out[j];
a[i][i]--;
}
a[][n+]--;
for(int j=;j<=n+;j++)a[n][j]=;a[n][n]=;
gauss();
for(int i=;i<=m;i++)b[i]=a[u[i]][n+]/out[u[i]]+a[v[i]][n+]/out[v[i]];
double ans=;
sort(b+,b+m+,cmp);
for(int i=;i<=m;i++)ans+=b[i]*i;
printf("%.3lf",ans+(1e-));
return ;
}

注意:边数组比点数组大。

【BZOJ】3143: [Hnoi2013]游走 期望+高斯消元的更多相关文章

  1. bzoj 3143 [Hnoi2013]游走【高斯消元+dp】

    参考:http://blog.csdn.net/vmurder/article/details/44542575 和2337有点像 设点u的经过期望(还是概率啊我也分不清,以下都分不清)为\( x[u ...

  2. [BZOJ3143][HNOI2013]游走(期望+高斯消元)

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3576  Solved: 1608[Submit][Status ...

  3. [HNOI2013]游走 期望+高斯消元

    纪念首道期望题(虽说绿豆蛙的归宿才是,但是我打的深搜总觉得不正规). 我们求出每条边的期望经过次数,然后排序,经过多的序号小,经过少的序号大,这样就可以保证最后的值最小. 对于每一条边的期望经过次数, ...

  4. bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元

    [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3394  Solved: 1493[Submit][Status][Disc ...

  5. 【BZOJ 3143】【Hnoi2013】游走 期望+高斯消元

    如果纯模拟,就会死循环,而随着循环每个点的期望会逼近一个值,高斯消元就通过列方正组求出这个值. #include<cstdio> #include<cctype> #inclu ...

  6. [luogu3232 HNOI2013] 游走 (高斯消元 期望)

    传送门 题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等 ...

  7. 洛谷P3232 [HNOI2013]游走(高斯消元+期望)

    传送门 所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了…… 首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号 边的期望次 ...

  8. BZOJ3143 [Hnoi2013]游走 【高斯消元】

    题目 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编 ...

  9. bzoj3143游走——期望+高斯消元

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3143 只需算出每条边被经过的概率,将概率从小到大排序,从大到小编号,就可得到最小期望: 每条 ...

随机推荐

  1. 青岛 2016ICPC 区域现场赛题目

    A. Relic Discovery B. Pocket Cube C. Pocky D. Lucky Coins E. Fibonacci F. Lambda Calculus G. Coding ...

  2. mysql的程序组成

    MySQL的程序组成 1:客户端 mysql:客户端程序 mysqldump:mysql备份工具 mysqladmin:mysql管理工具 mysqlbinlog:二进制日志查询工具 2:服务端 my ...

  3. CKeditor、CKFinder的安装配置

    CKEditor是不集成文件上传与管理功能的,文件上传管理功能被集成在CKFinder中,这是一个收费的商业软件. 如需要文件上传与管理功能建议使用FCKeditor或者手动破解CKFinder. 下 ...

  4. (七)对Jmeter进行参数化的俩种方式

    一.使用CSV Data Set Config: 1.添加CSV Data Set Config: 2.配置参数: Filename:文件名,指保存参数化数据的文件目录,可以相对或者绝对路径. Fil ...

  5. 新手必备!11个强大的 Visual Studio 调试技巧

    简介 调试是软件开发周期中很重要的一部分.它具有挑战性,同时也很让人疑惑和烦恼.总的来说,对于稍大一点的程序,调试是不可避免的.最近几年,调试工具的发展让很多调试任务变的越来越简单和省时. 这篇文章总 ...

  6. mysql 中文字段排序

    方法1)select * from mytable order by CONVERT(chineseColumnName USING gbk);  (备注:chineseColumnName 位排序字 ...

  7. UVA11653_Buses

    这个题目很有意思,一不小心就会让人坑在里面. 题意是这样的,给你n,k,l.分别表示总共的长度,长度为5和10的车的不同颜色数量现在问你要把n的填满有多少种方案. 很多人一开始都会脑子一根筋地想用排列 ...

  8. HDU——1573 X问题

    又来一发水题. 解同余方程而已,用类似于剩余定理的方法就O了. 直接上代码:(注意要判断是否有解这种情况) #include <iostream> #include <cstdio& ...

  9. 51nod 1804 小C的多边形(构造)

    首先可以算出无解的充分不必要条件,所有边的和为sum=3*((n-1)*n)/2,如果sum%n!=0显然无解. 也就是说n为奇数必然无解.现在考虑n为偶数的情况. 不妨假设n为偶数有解,现在考虑如何 ...

  10. Angel Beats,AFOer Beats?

    意识模糊的时候适合写一些奇怪的东西? NOI退役之后我尝试了很多方法调节心态.(比如做OI题,出OI题,学文化课,读书,吃饭,睡觉,水群,看番,推galgame). 然而看啥都是退役的画风.比如说推W ...