[BZOJ2095]Bridges
最大值最小,是二分
转化为判定问题:给定一个混合图,问是否存在欧拉回路
首先,有向图存在欧拉回路的充要条件是每个点的入度等于出度,现在我们有一个混合图,我们要做的就是给其中的无向边定向,使得它变成有向图之后存在欧拉回路
记点$x$的入度为$in_x$,出度为$out_x$,我们的目标是使得每个点$x$满足$in_x-out_x=0$
先随便给每条无向边定向,这样不一定满足要求,所以我们必须让某些边反向,反向$a\rightarrow b$会让$in_a-out_a$增加$2$,让$in_b-out_b$减少$2$,所以如果存在$in_x-out_x\equiv1(\text{mod }2)$那么无解
为了决定是否反向某些无向边,我们这样建图:
对于$in_x\lt out_x$的$x$,连边$x\rightarrow T$,容量为$\dfrac{out_x-in_x}2$
对于$in_x\gt out_x$的$x$,连边$S\rightarrow x$,容量为$\dfrac{in_x-out_x}2$
对于一条无向边,如果一开始硬点它的方向为$x\rightarrow y$,那么连边$y\rightarrow x$,权值为$1$
这样建图跑最大流,每流过一条原图中的无向边就相当于将它反向(这条无向边的两个端点的流量之和就是$\left|in_x-out_x\right|$的改变量),跑最大流是因为我们想要尽可能地缩小$in_x$和$out_x$的差距,如果满流,自然就存在欧拉回路了
#include<stdio.h> #include<string.h> const int inf=2147483647; int abs(int x){return x>0?x:-x;} int min(int a,int b){return a<b?a:b;} int h[1010],cur[1010],nex[10010],to[10010],cap[10010],dis[1010],q[10010],M,S,T; void add(int a,int b,int c){ M++; to[M]=b; cap[M]=c; nex[M]=h[a]; h[a]=M; M++; to[M]=a; cap[M]=0; nex[M]=h[b]; h[b]=M; } bool bfs(){ int head,tail,x,i; memset(dis,-1,sizeof(dis)); head=tail=1; q[1]=S; dis[S]=0; while(head<=tail){ x=q[head]; head++; for(i=h[x];i;i=nex[i]){ if(cap[i]&&dis[to[i]]==-1){ dis[to[i]]=dis[x]+1; if(to[i]==T)return 1; tail++; q[tail]=to[i]; } } } return 0; } int dfs(int x,int flow){ if(x==T)return flow; int i,f; for(i=cur[x];i;i=nex[i]){ if(cap[i]&&dis[to[i]]==dis[x]+1){ f=dfs(to[i],min(flow,cap[i])); if(f){ cap[i]-=f; cap[i^1]+=f; if(cap[i])cur[x]=i; return f; } } } dis[x]=-1; return 0; } int dicnic(){ int ans=0,tmp; while(bfs()){ memcpy(cur,h,sizeof(h)); while(tmp=dfs(S,inf))ans+=tmp; } return ans; } int n,m,in[1010],ou[1010]; struct edge{ int x,y,a,b; }e[2010]; bool check(int lim){ int i,s; memset(h,0,sizeof(h)); memset(in,0,sizeof(in)); memset(ou,0,sizeof(ou)); M=1; for(i=1;i<=m;i++){ if(e[i].a<=lim&&e[i].b<=lim){ add(e[i].y,e[i].x,1); ou[e[i].x]++; in[e[i].y]++; }else if(e[i].a<=lim){ ou[e[i].x]++; in[e[i].y]++; }else if(e[i].b<=lim){ ou[e[i].y]++; in[e[i].x]++; }else return 0; } s=0; for(i=1;i<=n;i++){ if(abs(in[i]-ou[i])&1)return 0; if(in[i]<ou[i])add(i,T,(ou[i]-in[i])>>1); if(in[i]>ou[i]){ add(S,i,(in[i]-ou[i])>>1); s+=(in[i]-ou[i])>>1; } } return s==dicnic(); } int main(){ int i,l,r,mid,ans; scanf("%d%d",&n,&m); for(i=1;i<=m;i++)scanf("%d%d%d%d",&e[i].x,&e[i].y,&e[i].a,&e[i].b); S=n+1; T=n+2; ans=-1; l=0; r=1000; while(l<=r){ mid=(l+r)>>1; if(check(mid)){ ans=mid; r=mid-1; }else l=mid+1; } if(ans==-1) puts("NIE"); else printf("%d",ans); }
[BZOJ2095]Bridges的更多相关文章
- 【BZOJ2095】[Poi2010]Bridges 动态加边网络流
[BZOJ2095][Poi2010]Bridges Description YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个 ...
- BZOJ2095 POI2010 Bridges 【二分+混合图欧拉回路】
BZOJ2095 POI2010 Bridges Description YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个小岛 ...
- 【BZOJ2095】[Poi2010]Bridges
[BZOJ2095][Poi2010]Bridges 题面 darkbzoj 题解 首先可以想到二分答案,那么我们就是要求我们新图中给所有边定向是否存在欧拉回路. 而有向图存在欧拉回路的充要条件为所有 ...
- [BZOJ2095][Poi2010]Bridges 最大流(混合图欧拉回路)
2095: [Poi2010]Bridges Time Limit: 10 Sec Memory Limit: 259 MB Description YYD为了减肥,他来到了瘦海,这是一个巨大的海, ...
- [BZOJ2095][Poi2010]Bridges 二分+网络流
2095: [Poi2010]Bridges Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1187 Solved: 408[Submit][Sta ...
- BZOJ2095 [Poi2010]Bridges
首先二分答案...然后这张图变成了有一些有向边,有一些无向边 然后就是混合图欧拉回路的判断 我们知道如果是有向图,它存在欧拉回路的等价条件是所有点的出度等于入度 对于混合图...先不管有向边,把无向边 ...
- BZOJ2095:[POI2010]Bridges(最大流,欧拉图)
Description YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个小岛可以到另外任意一个小岛.现在YYD想骑单车从小岛1 ...
- bzoj千题计划228:bzoj2095: [Poi2010]Bridges
http://www.lydsy.com/JudgeOnline/problem.php?id=2095 二分答案,判断是否存在混合图的欧拉回路 如果只有一个方向的风力<=mid,这条边就是单向 ...
- bzoj2095: [Poi2010]Bridges(二分+混合图求欧拉回路)
传送门 这篇题解讲的真吼->这里 首先我们可以二分一个答案,然后把所有权值小于这个答案的都加入图中 那么问题就转化为一张混合图(既有有向边又有无向边)中是否存在欧拉回路 首先 无向图存在欧拉回路 ...
随机推荐
- Vue_自定义指令
关于Vue的自定义指令: - 在Vue中除了核心功能默认内置的指令(v-model & v-show) - Vue也允许注册自定义指令. 注意,在 Vue2.0 中,代码复用和抽象的主要形式是 ...
- ssh.sh_for_centos
#!/bin/bash sed -i 's/#PermitRootLogin yes/PermitRootLogin yes/g' /etc/ssh/sshd_config sed -i 's/#Us ...
- [OpenCV]Mat类详解
http://blog.csdn.net/yang_xian521/article/details/7107786 Preface Mat:Matrix Mat类可以被看做是opencv中C++版本的 ...
- springboot07 mysql02
多表关系 一.表关系介绍 1. 表之间为什么要有关系 一般来讲,通常都是一张表某一类型数据,比如学生数据存储在学生表,教师数据存储在教师表,学科数据存储在学科表.但是有时候我们需要表示一个学生属于哪一 ...
- HDU 4731 Minimum palindrome (找规律)
M=1:aaaaaaaa…… M=2:DFS+manacher, 暴出N=1~25的最优解,找规律.N<=8的时候直接输出,N>8时,头两个字母一定是aa,剩下的以aababb循环,最后剩 ...
- event.returnValue=false与event.preventDefault()
event.preventDefault()方法是用于取消事件的默认行为,但此方法并不被ie支持,在ie下需要用window.event.returnValue = false; 来实现. funct ...
- 更优雅的清除浮动float方法
上篇文章是利用 :after 方法清除浮动float(作用于浮动元素的父元素上). ; } //为了兼容性,因为ie6/7不能使用伪类,所以加上此行代码. .outer:after {;;visibi ...
- rsync同步数据
1. rsync 命令格式rsync [OPTION]... SRC DESTrsync [OPTION]... SRC [USER@]HOST:DESTrsync [OPTION]... [USER ...
- 【bzoj2079】[Poi2010]Guilds 构造结论题
题目描述 Zy皇帝面临一个严峻的问题,两个互相抵触的贸易团体,YYD工会和FSR工会,他们在同一时间请求在王国各个城市开办自己的办事处.这里有n个城市,其中有一些以双向马路相连,这两个工会要求每个城市 ...
- 2016-2017 ACM-ICPC, Egyptian Collegiate Programming Contest (ECPC 16)
A.The game of Osho(sg函数+二项展开) 题意: 一共有G个子游戏,一个子游戏有Bi, Ni两个数字.两名玩家开始玩游戏,每名玩家从N中减去B的任意幂次的数,直到不能操作判定为输.问 ...