基于物品过滤的Slope One 算法
Slope One 算法是由 Daniel Lemire 教授在 2005 年提出的一个 Item-Based 推荐算法。 他的主要优点是简单,易于扩展。实际上有多个Slope One算法,在此主要学习加权的Slope One算法。它将分为两步,第一步 为计算所有物品间的偏差,第二步利用偏差进行预测。下面分两步介绍该算法,并给出python实现的程序。
第一步 : 计算偏差
基于下面用户对乐队的评分例子:

先计算偏差,物品 i 到物品 j 的平均偏差为:

其中card(S)表示S中元素的个数,X是整个评分集合。因此card(Si,j(X))是所有同时对 i 和 j 进行评分的用户集合。从公式容易可以看出:

然后是维护问题,考虑如下问题:倘若又有新用户对其中的10个物品进行了评分,我们是否有必要重新计算dev矩阵。显然如果重新计算,性能问题将成为瓶颈,计算量会大的惊人。然而只要我们事先记录了两个物品的偏差同时,还记录下同时对两个物品评分的用户数目即可。这样可以在旧数据基础上更新了,大大减少了运算量,这也是Slope one算法的一个优点,易于维护。
第二步,利用加权Slope One 算法进行预测
Slope One的预测公式如下:

Pwsl(u,j)指的是利用加权Slope One算法给出用户 u 对物品 j 的评分预测值。S(u)表示所有u评级过的物品的集合。实际上这个加权的权重根据评分用户数得出的。
基于python的实现:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# __author__ : '小糖果' import json
import sys
from math import sqrt
from pprint import pprint class Recommender(object):
def __init__(self,data):
'''
frequencies用来记录共同评价i,j物品的用户数目
deviations用来记录物品i与j的评分差值
'''
self.frequencies = {}
self.deviations = {}
self.data = data def computeDeviations(self):
"""
计算dev(i,j)以及同时评级i,j物品的用户数,data数据为
json格式的字典
""" '''遍历每一个人的评分记录'''
for ratings in self.data.values():
for (item,rating) in ratings.items():
self.frequencies.setdefault(item,{})
self.deviations.setdefault(item,{})
''' item和item2是该用户评分记录中的两个物品'''
for (item2,rating2) in ratings.items():
if item != item2:
self.frequencies[item].setdefault(item2,0)
self.deviations[item].setdefault(item2,0.)
self.frequencies[item][item2] += 1
self.deviations[item][item2] += rating - rating2
# 接下来计算dev
for (item,ratings) in self.deviations.items():
for item2 in ratings:
self.deviations[item][item2] /= self.frequencies[item][item2] def slopeOneRecommendations(self,username):
userRatings = self.data[username]
recommendtions = {}
frequencies = {}
for (userItem,userRating) in userRatings.items():
for (diffItem,diffRatings) in self.deviations.items():
if diffItem not in userRatings and \
userItem in diffRatings:
freq = self.frequencies[diffItem][userItem]
recommendtions.setdefault(diffItem,0.)
frequencies.setdefault(diffItem,0)
recommendtions[diffItem] += \
(self.deviations[diffItem][userItem] + userRating)*freq
frequencies[diffItem] += freq
recommendtions = [(item,rating/frequencies[item])\
for (item,rating) in recommendtions.items()]
recommendtions.sort(key = lambda ele:ele[1],reverse = True)
return recommendtions def test():
with open('records.json','r') as f:
users = json.load(f)
instance = Recommender(users)
instance.computeDeviations()
print instance.slopeOneRecommendations('Bill') if __name__ == '__main__':
test()
基于物品过滤的Slope One 算法的更多相关文章
- 基于物品的协同过滤推荐算法——读“Item-Based Collaborative Filtering Recommendation Algorithms” .
ligh@local-host$ ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.0.3 基于物品的协同过滤推荐算法--读"Item-Based ...
- Spark 基于物品的协同过滤算法实现
J由于 Spark MLlib 中协同过滤算法只提供了基于模型的协同过滤算法,在网上也没有找到有很好的实现,所以尝试自己实现基于物品的协同过滤算法(使用余弦相似度距离) 算法介绍 基于物品的协同过滤算 ...
- 基于物品的协同过滤算法(ItemCF)
最近在学习使用阿里云的推荐引擎时,在使用的过程中用到很多推荐算法,所以就研究了一下,这里主要介绍一种推荐算法—基于物品的协同过滤算法.ItemCF算法不是根据物品内容的属性计算物品之间的相似度,而是通 ...
- 【笔记6】用pandas实现条目数据格式的推荐算法 (基于物品的协同)
''' 基于物品的协同推荐 矩阵数据 说明: 1.修正的余弦相似度是一种基于模型的协同过滤算法.我们前面提过,这种算法的优势之 一是扩展性好,对于大数据量而言,运算速度快.占用内存少. 2.用户的评价 ...
- 【笔记5】用pandas实现矩阵数据格式的推荐算法 (基于物品的协同)
''' 基于物品的协同推荐 矩阵数据 说明: 1.修正的余弦相似度是一种基于模型的协同过滤算法.我们前面提过,这种算法的优势之 一是扩展性好,对于大数据量而言,运算速度快.占用内存少. 2.用户的评价 ...
- 推荐召回--基于物品的协同过滤:ItemCF
目录 1. 前言 2. 原理&计算&改进 3. 总结 1. 前言 说完基于用户的协同过滤后,趁热打铁,我们来说说基于物品的协同过滤:"看了又看","买了又 ...
- 转】Mahout分步式程序开发 基于物品的协同过滤ItemCF
原博文出自于: http://blog.fens.me/hadoop-mahout-mapreduce-itemcf/ 感谢! Posted: Oct 14, 2013 Tags: Hadoopite ...
- 基于物品的协同过滤item-CF 之电影推荐 python
推荐算法有基于协同的Collaboration Filtering:包括 user Based和item Based:基于内容 : Content Based 协同过滤包括基于物品的协同过滤和基于用户 ...
- Music Recommendation System with User-based and Item-based Collaborative Filtering Technique(使用基于用户及基于物品的协同过滤技术的音乐推荐系统)【更新】
摘要: 大数据催生了互联网,电子商务,也导致了信息过载.信息过载的问题可以由推荐系统来解决.推荐系统可以提供选择新产品(电影,音乐等)的建议.这篇论文介绍了一个音乐推荐系统,它会根据用户的历史行为和口 ...
随机推荐
- CodeForces Round #515 Div.3 C. Books Queries
http://codeforces.com/contest/1066/problem/C You have got a shelf and want to put some books on it. ...
- 内存cgroup
内存cgroup的值都是从哪里来的呀 page_counter_charge是增加page_counter的计数, try_charge函数和mem_cgroup_migrate函数是增加普通进程内存 ...
- [YNOI2017][bzoj4811][luogu3613] 由乃的OJ/睡觉困难综合症 [压位+树链剖分+线段树]
题面 BZOJ题面,比较不清晰 Luogu题面,写的比较清楚 思路 原题目 我们先看这道题的原题目NOI2014起床困难综合症 的确就是上树的带修改版本 那么我们先来解决这个原版的序列上单次询问 二进 ...
- [bzoj] 1036 Count
原题 树链剖分板子题 树剖详解: #include<cstdio> #include<algorithm> typedef long long ll; #define N 30 ...
- 雅礼集训 Day6 T2 Equation 解题报告
Equation 题目描述 有一棵\(n\)个点的以\(1\)为根的树,以及\(n\)个整数变量\(x_i\).树上\(i\)的父亲是\(f_i\),每条边\((i,f_i)\)有一个权值\(w_i\ ...
- 通过RHN网站给RHEL打补丁
[root@yum01 ~]# yum list-sec securityLoaded plugins: downloadonly, product-id, rhnplugin, security, ...
- OPENCV mat类
OpenCV参考手册之Mat类详解 目标 我们有多种方法可以获得从现实世界的数字图像:数码相机.扫描仪.计算机体层摄影或磁共振成像就是其中的几种.在每种情况下我们(人类)看到了什么是图像.但是,转换图 ...
- FreeRTOS系列第2篇---FreeRTOS入门指南【转】
转自:http://blog.csdn.net/zhzht19861011/article/details/49819309 版权声明:本文为博主原创文章,未经博主允许不得转载.联系邮箱:zhzhch ...
- 将打开的网页以html格式下载到本地
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- linux题目整理(一)
1.Linux如何挂载windows下的共享目录? mount.cifs /IP地址/server/ /mnt/server -O user=administrator password=yourpa ...