题意

题目链接

给出一张$n \times m$的网格,其中$1$为蓝点,$2$为白点。

$Q$次询问,每次询问一个子矩阵内蓝点形成的联通块的数量

保证任意联通块内的任意蓝点之间均只有一条路径可达

Sol

mdzz不好好读题目还想做题,。。

题目中说“联通块内的任意点都只有一条路径可达”,不难推断出这是一棵树

因此 联通块个数 = 蓝点的数量 - 蓝点间边的数量

考虑用前缀和维护,点的数量好处理,但是这个边的数量有点麻烦

反正我用一个数组是搞不出来,因为无法判断左右的方向。。

那就行列分别记录一下就可以了。

#include<cstdio>
#include<iostream>
#include<cstring>
#define LL long long
using namespace std;
const int MAXN = ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N, M, Q;
char s[MAXN][MAXN];
int P[MAXN][MAXN], R[MAXN][MAXN], L[MAXN][MAXN];
int GetP(int x, int y) {
if(x == || y == ) return ;
return P[x - ][y] + P[x][y - ] - P[x - ][y - ];
}
int GetR(int x, int y) {
if(x == || y == ) return ;
return R[x - ][y] + R[x][y - ] - R[x - ][y - ];
}
int GetL(int x, int y) {
if(x == || y == ) return ;
return L[x - ][y] + L[x][y - ] - L[x - ][y - ];
}
main() {
N = read(); M = read(); Q = read();
for(int i = ; i <= N; i++) {
scanf("%s", s[i] + );
for(int j = ; j <= M; j++) {
P[i][j] = GetP(i, j);
R[i][j] = GetR(i, j);
L[i][j] = GetL(i, j);
if(s[i][j] == '') L[i][j] += (s[i - ][j] == ''),
R[i][j] += (s[i][j - ] == ''),
P[i][j]++;
}
}
/*for(int i = 1; i <= N; i++, puts(""))
for(int j = 1; j <= M; j++)
printf("%d ", L[i][j]);*/
while(Q--) {
int x1 = read(), y1 = read(), x2 = read(), y2 = read();
// printf("%d %d %d %d\n", GetP(x2, y2), GetP(x1 - 1, y2), GetP(x2, y1 - 1), GetP(x1 - 1, y1 - 1));
int ans1 = P[x2][y2] - P[x1 - ][y2] - P[x2][y1 - ] + P[x1 - ][y1 - ];
int ans2 = R[x2][y2] - R[x1 - ][y2] - R[x2][y1] + R[x1 - ][y1];
int ans3 = L[x2][y2] - L[x2][y1 - ] - L[x1][y2] + L[x1][y1 - ];
cout << ans1 - ans2 - ans3 << endl;
}
return ;
}
/*
*/

AGC015 C Nuske vs Phantom Thnook(前缀和)的更多相关文章

  1. AtCoder:C - Nuske vs Phantom Thnook

    C - Nuske vs Phantom Thnook https://agc015.contest.atcoder.jp/tasks/agc015_c 题意: n*m的网格,每个格子可能是蓝色, 可 ...

  2. Nuske vs Phantom Thnook

    Nuske vs Phantom Thnook Time limit : 4sec / Memory limit : 256MB Score : 700 points Problem Statemen ...

  3. AGC 015C.Nuske vs Phantom Thnook(思路 前缀和)

    题目链接 闻本题有格子,且何谓格子也 \(Description\) 给定\(n*m\)的蓝白矩阵,保证蓝格子形成的的同一连通块内,某蓝格子到达另一个蓝格子的路径唯一. \(Q\)次询问.每次询问一个 ...

  4. AtCoder Grand Contest 015 C - Nuske vs Phantom Thnook

    题目传送门:https://agc015.contest.atcoder.jp/tasks/agc015_c 题目大意: 现有一个\(N×M\)的矩阵\(S\),若\(S_{i,j}=1\),则该处为 ...

  5. [agc015c]nuske vs phantom thnook

    题意: 有一个n*m的网格图,每个格子是蓝色或白色.四相邻的两个格子连一条边,保证蓝格子构成一个森林. 有q组询问,每次询问给出一个矩形,问矩形内蓝格子组成的联通块个数. $1\leq n,m\leq ...

  6. Atcoder C - Nuske vs Phantom Thnook(递推+思维)

    题目链接:http://agc015.contest.atcoder.jp/tasks/agc015_c 题意:给一个n*m的格,蓝色的组成路径保证不成环,q个询问,计算指定矩形区域内蓝色连通块的个数 ...

  7. C - Nuske vs Phantom Thnook

    题意:n*m矩阵,n,m<=2e3,矩阵中的1能走到相邻4个1上,0代表障碍,若两个1联通 则只有一条路径 q个询问,q<=2e5,每次询问一个子矩阵中有多少个连通分量? 同一个连通分量中 ...

  8. [NOIP2019模拟赛][AT2381] Nuske vs Phantom Thnook

    题目链接 评测姬好快啊(港记号?)暴力40pts变成60pts 因为题目说了保证蓝色点两两之间只有一条路径,所以肯定组成了一棵树,而对于每次询问的x1,y1,x2,y2的子矩阵中就存在着一个森林 不难 ...

  9. 「AT2381 [AGC015C] Nuske vs Phantom Thnook」

    题目大意 给出一个01矩阵,这个矩阵有一个特殊的性质: 对于任意两个 \(1\) 之间最多只有 \(1\) 条由 \(1\) 构成的路径.每次询问给出一个矩形范围,查询在这个范围内的联通快个数. 分析 ...

随机推荐

  1. [cf839d]Winter is here容斥原理

    题意:给定一个数列${a_i}$,若子序列长度为$k$,最大公约数为$gcd$,定义子序列的权值为$k*\gcd (\gcd  > 1)$.求所有子序列的权值和. 答案对10^9+7取模. 解题 ...

  2. 文件格式——Sam&bam文件

    Sam&bam文件 SAM是一种序列比对格式标准, 由sanger制定,是以TAB为分割符的文本格式.主要应用于测序序列mapping到基因组上的结果表示,当然也可以表示任意的多重比对结果.当 ...

  3. storm启动supervisor源码分析-supervisor.clj

    supervisor是storm集群重要组成部分,supervisor主要负责管理各个"工作节点".supervisor与zookeeper进行通信,通过zookeeper的&qu ...

  4. JavaScript学习系列6 -- JavaScript中的垃圾回收(内存释放)

    程序开发中,涉及到的内存生命周期基本是一样的,分为以下三步 1. 分配需要的内存 2. 使用分配到的内存 3. 释放其内存    ----什么时候释放内存,以及需要释放哪些变量的内存, 就是垃圾回收机 ...

  5. asp.net Page.Controls对象(找到所有服务器控件)

    前台 复制代码 代码如下: <%@ Page Language="C#" AutoEventWireup="true" CodeFile="De ...

  6. mysql的性能优化总结

    经验是从别人那里拿来的,不想直接复制黏贴,想亲自总结下,巴拉巴拉.........进入正题吧 一.为查询加入缓存 1.检查数据库是否开启缓存:show variables like '%query_c ...

  7. 详解Java中的Object.getClass()方法

    详解Object.getClass()方法,这个方法的返回值是Class类型,Class c = obj.getClass(); 通过对象c,我们可以获取该对象的所有成员方法,每个成员方法都是一个Me ...

  8. Codeforces - 77B - Falling Anvils - 几何概型

    https://codeforc.es/contest/77/problem/B 用求根公式得到: \(p-4q\geq0\) 换成熟悉的元: \(y-4x\geq0\) 其中: \(x:[-b,b] ...

  9. 远程控制Ubuntu系统小结

    一.在远程控制的Ubuntu上,按shift键总会出现中文字符 因为在Ubuntu中,默认启动搜狗输入法,导致在按shift键时,不停出现中文字符 一开始以为是因为远程控制,在主控机和被控机的输入法之 ...

  10. 【转】processOnServer

    源地址:http://blog.csdn.net/dl020840504/article/details/8856853