题面:

传送门

思路:

插头dp基础教程

先理解一下题意:实际上就是要你求这个棋盘中的哈密顿回路个数,障碍不能走

看到这个数据范围,还有回路处理,就想到使用插头dp来做了

观察一下发现,这道题因为都是回路,所以联通块上方的插头一定两两配对,可以使用括号序列代替最小表示法

分情况讨论一下

情况一:当前格子上方和左方都没有插头

这种时候可以继续,也可以给当前格子加一个下插头一个右插头,相当于一个新的联通分量

情况二:上方有一个下插头,左边没有

这时有两个决策:可以向右转,也可以继续向下,操作就是分别给这个格子一个右插头或者一个下插头

注意此时新插头的括号类型和原来的那个插头相同(画个图可以理解一下)

情况三:左边有一个右插头,上面没有

同情况二,转弯或者直走

情况四:都有插头,而且两个插头是同一括号

这种情况,我们可以将这两个插头合并,在当前格子把这条路径封闭了

但是这里需要考虑一下其他的插头

我们去掉了两个相同的括号,就需要把另外一个括号反过来配对才行

比如当前的括号序列是 ((##()#())##),加粗的是我们要合并的两个括号,那么这两个)变成#以后,它们原来匹配的左括号(就失配了,需要其中一个(右边的那个)左括号变成右括号,两个重新配对

也就是((##()#())##)变成((##()#(####)变成((##()#)####)

当然也可以画个图理解一下,两条路径相当于是绕了圈接起来了

这个操作需要扫一遍整个序列,是$O\left(n\right)$的,当然也可以预处理变成$O\left(1\right)$

情况五:都有插头,且两个是)(

这时候直接合并就好了,图片同上(理解一下,博主懒得再画一个图了.......)

情况六:都有插头,而且两个是()

这种时候只有在最后一个非障碍格子才能合并,标志着路径完全封闭,得到了一个答案

图中的蓝色和绿色代表样例中的两条路径,再最后一个格子合并

状态数略多,可以滚动数组+哈希处理

分类讨论的时候注意可不可以这么做(需要判断下一个格子是否为障碍)

Code:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
#define hash ddf
using namespace std;
int n,m,x[][],cur,pre,ex,ey;
int st[][];ll ans[][],re;
int tot[],bit[],state[],st_tot,hash=;
struct edge{
int to,next;
}a[];
void insert(int sta,ll val){
// cout<<"insert "<<sta<<ends<<val<<endl;
int p=sta%hash,i;
for(i=state[p];i;i=a[i].next){
if(st[cur][a[i].to]==sta){
ans[cur][a[i].to]+=val;return;
}
}
tot[cur]++;
a[++st_tot].to=tot[cur];
a[st_tot].next=state[p];
state[p]=st_tot;st[cur][tot[cur]]=sta;ans[cur][tot[cur]]=val;
}
int main(){
int i,j,k,l,now,down,right;ll val;char s[];
scanf("%d%d",&n,&m);
for(i=;i<=n;i++){
scanf("%s",s);
for(j=;j<m;j++)
if(s[j]=='.')
x[i][j+]=,ex=i,ey=j+;
}
for(i=;i<;i++) bit[i]=i<<;
cur=;tot[cur]=;ans[cur][]=;st[cur][]=;
for(i=;i<=n;i++){
for(j=;j<=tot[cur];j++) st[cur][j]<<=;
for(j=;j<=m;j++){
// cout<<"begin "<<i<<ends<<j<<endl;
st_tot=;memset(state,,sizeof(state));
pre=cur;cur^=;tot[cur]=;
for(k=;k<=tot[pre];k++){
now=st[pre][k];val=ans[pre][k];
down=(now>>bit[j-])%;right=(now>>bit[j])%;
// cout<<" from "<<now<<ends<<val<<ends<<down<<ends<<right<<endl;
if(!x[i][j]){
if(!down&&!right){
insert(now,val);continue;
}
}
else if(!down&&!right){
if(x[i][j+]&&x[i+][j])
insert(now+(<<bit[j-])+((<<bit[j])<<),val);
}
else if(!down&&right){
if(x[i][j+]) insert(now,val);
if(x[i+][j])
insert(now-right*(<<bit[j])+right*(<<bit[j-]),val);
}
else if(down&&!right){
if(x[i+][j]) insert(now,val);
if(x[i][j+])
insert(now+down*(<<bit[j])-down*(<<bit[j-]),val);
}
else if(down==&&right==){
int cnt=;
for(l=j+;l<=m;l++){
if((now>>bit[l])%==) cnt++;
if((now>>bit[l])%==) cnt--;
if(!cnt){
insert(now-(<<bit[l])-(<<bit[j])-(<<bit[j-]),val);
break;
}
}
}
else if(down==&&right==){
int cnt=;
for(l=j-;l>=;l--){
if((now>>bit[l])%==) cnt++;
if((now>>bit[l])%==) cnt--;
if(!cnt){
insert(now+(<<bit[l])-((<<bit[j])<<)-((<<bit[j-])<<),val);
break;
}
}
}
else if(down==&&right==){
insert(now-((<<bit[j-])<<)-(<<bit[j]),val);
}
else if(down==&&right==){
if(i==ex&&j==ey) re+=val;
}
}
}
}
printf("%lld\n",re);
}

[URAL1519] Formula 1 [插头dp入门]的更多相关文章

  1. URAL1519 Formula 1 —— 插头DP

    题目链接:https://vjudge.net/problem/URAL-1519 1519. Formula 1 Time limit: 1.0 secondMemory limit: 64 MB ...

  2. URAL Formula 1 ——插头DP

    [题目分析] 一直听说这是插头DP入门题目. 难到爆炸. 写了2h,各种大常数,ural垫底. [代码] #include <cstdio> #include <cstring> ...

  3. 【BZOJ1814】Ural 1519 Formula 1 插头DP

    [BZOJ1814]Ural 1519 Formula 1 题意:一个 m * n 的棋盘,有的格子存在障碍,求经过所有非障碍格子的哈密顿回路个数.(n,m<=12) 题解:插头DP板子题,刷板 ...

  4. 【Ural】1519. Formula 1 插头DP

    [题目]1519. Formula 1 [题意]给定n*m个方格图,有一些障碍格,求非障碍格的哈密顿回路数量.n,m<=12. [算法]插头DP [题解]<基于连通性状态压缩的动态规划问题 ...

  5. bzoj1814 Ural 1519 Formula 1(插头dp模板题)

    1814: Ural 1519 Formula 1 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 924  Solved: 351[Submit][Sta ...

  6. hdu 1693 插头dp入门

    hdu1693 Eat the Trees 题意 在\(n*m\)的矩阵中,有些格子有树,没有树的格子不能到达,找一条或多条回路,吃完所有的树,求有多少种方法. 解法 这是一道插头dp的入门题,只需要 ...

  7. 动态规划之插头DP入门

    基于联通性的状态压缩动态规划是一类非常典型的状态压缩动态规划问题,由于其压缩的本质并不像是普通的状态压缩动态规划那样用0或者1来表示未使用.使用两种状态,而是使用数字来表示类似插头的状态,因此.它又被 ...

  8. bzoj 1814 Ural 1519 Formula 1 ——插头DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1814 普通的插头 DP .但是调了很久.注意如果合并两个 1 的话,不是 “把向右第一个 2 ...

  9. Ural 1519 Formula 1 插头DP

    这是一道经典的插头DP单回路模板题. 用最小表示法来记录连通性,由于二进制的速度,考虑使用8进制. 1.当同时存在左.上插头的时候,需要判断两插头所在连通块是否相同,若相同,只能在最后一个非障碍点相连 ...

随机推荐

  1. python_图形界面编程示例

    "常用Tkinter组件的使用" #一.弹出消息框 #1 弹出提示消息框 from tkinter.messagebox import * showinfo(title='提示', ...

  2. appium---adb通过wifi连接手机

    前几天接到领导的安排,想要测试下apk的耗电量,可以通过手机adb命令进行监控手机电量的变化:但是这样如果通过USB连接手机的话,USB就会自动给手机进行充电,无法达到我们想要的结果,于是想到了通过w ...

  3. Hadoop集群批量命令执行

    ./pdsh -R ssh -w node-10-0[0-5] hostname -R:指定传输方式,默认为rsh,本例为ssh,如果希望ssh传输需要另行安装pdsh-rcmd-ssh,如果希望ss ...

  4. 认识mysql(4)

    今日是MySQL的第四篇,难度会稍微加大,加油! 开始吧! 1.外键(foreign  key) 1.定义:让当前表字段的值在另一个表的范围内选择 2.语法: foreign key(参考字段名) r ...

  5. linux普通文件权限和系统目录权限的实践及结论

    测试结论:linux普通文件的读.写.执行权限说明 1.可读r:表示具有读取\阅读文件内容的权限 2.可写w:表示具有新增.修改文件内容的权限 1)如果没有r配合,那么vi编辑文件会提示无法编辑(但可 ...

  6. web前端的环境配置

    1.1.WEB开发的相关知识 WEB,在英语中web即表示网页的意思,它用于表示Internet主机上供外界访问的资源. Internet上供外界访问的Web资源分为: 静态web资源(如html 页 ...

  7. 【104】Maven3.5.0结合eclipse使用,提示Lambda expressions are allowed only at source level 1.8 or above错误的解决方法

    错误重现 我的机器上安装了 maven 3.5.0,在 eclipse 中创建 maven 项目.pom.xml配置如下: <project xmlns="http://maven.a ...

  8. 用描述符实现classmethod方法和staticmethod方法

    1. @classmethod class ClassMethod: def __init__(self, func): self.func = func def __get__(self, inst ...

  9. Kubernetes添加带Quota限额的CephFS StorageClass

    1. 在Ceph上为Kubernetes创建一个文件系统 # ceph osd pool create cephfs_data # ceph osd pool create cephfs_metada ...

  10. Android拨打电话不弹出系统拨号界面总结

    我在网上搜了一下,解决这个问题,有两种方式: 1.反射调用系统底层方法,并获取系统权限 反射调用的代码如下: Class phoneFactoryClass = Class.forName(" ...